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A new model for polymers is presented. REVLD (Rigid, Excluded Volume, Langevin Dynamics) is similar
to the coarse-grained, bead spring model for linear chains except that the inter-bead distance is rigidly
constrained instead of using an inter-bead potential to encapsulate the connectivity. Static and dynamic
results support that REVLD accurately reproduces the single-chain behavior of real polymers known from
experiment, theory, and published data from existing models. Additionally, a time step can be used that
is at least comparable to simulations using a FENE potential without introducing any computational
overhead for accessing longer time scale modes. REVLD, and more simply the idea of using constraints
in Cartesian coordinates for large simulations, was made computationally viable through the recent
development of the algorithm MILC SHAKE. We expect it to improve established techniques and aid
in the development of new models of import to large scale simulations that were not practicable before.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Using computational methods to approach questions in polymer
science is now a familiar concept. Techniques such as Monte Carlo,
molecular dynamics, electronic structure calculations, and contin-
uum models have long been used to challenge theory and answer
questions experiments cannot hope to probe. With the continuing
advancement of technology, this third branch of research – along
with theory and experiments – will have only an increasingly im-
portant role in scientific investigation.

Restricting ourselves to the area of polymer melts, molecular
dynamics (MD) has proven to be a powerful technique for address-
ing fundamental questions of chain behavior and their viscoelas-
tic properties resulting from topological constraints. Specifically, a
seminal body of work by Kremer et al., addresses the connection
between the microscopic description and macroscopic quantities
and the validity of the Rouse and reptation models [1–4]. They
were able to do so by foregoing inclusion of atomistic detail and
coarse-graining each chain into a series of units, or beads, each
representing a few monomers. The connectivity is encapsulated in
an anharmonic potential, called the FENE (Finitely Extensible Non-
linear Elastic) potential. A purely repulsive Lennard-Jones potential
acts between all beads to enforce excluded volume. The result will
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be referred to here as the bead spring model. Although perhaps the
most conspicuous application was polymer melts, the basic model
and variants are frequently applied to systems at lower densities.
In particular, simulations of polymers with implicit solvent include
many lipid and surfactant studies [5].

In these types of large scale studies, computational efficiency
is of utmost importance. It is therefore desirable to increase the
size of the time step as much as possible to quickly explore phase
space and probe long time scale modes of interest. The integration
step size in an atomistic simulation is constrained by the steepest
potential. This generally corresponds to bonded interactions. One
can get around this limitation by using constraints. The advantage
is that the uninteresting, fast vibrational degrees of freedom are
frozen out and a larger time step can be used.

On the other hand, if one is considering a coarse-grained model
(as we are here) then these modes have already been integrated
out [6]. This fact is exploited in the model proposed by Kremer and
Grest, where the interaction between coarse-grained units is rep-
resents by a FENE potential. This potential is harmonic for small
separations and the authors optimized the parameterization to
maximize the time-step that they could use. However, for situa-
tions where the molecules under study are relatively inextensible
then, even on a coarse-grained level, constraints could be the pre-
ferred option. One question that we address here is can this be
done while reproducing correct physical behavior and without any
significant computational overhead?
polymers, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:aimee.bailey06@imperial.ac.uk
http://dx.doi.org/10.1016/j.cpc.2009.01.025


ARTICLE IN PRESS COMPHY:3759

JID:COMPHY AID:3759 /FLA [m5G; v 1.23; Prn:12/02/2009; 14:48] P.2 (1-6)

2 A.G. Bailey et al. / Computer Physics Communications ••• (••••) •••–•••
The best algorithms to calculate the constraint force are slowly
convergent and computationally expensive [7,8]. This study using
constraints has been made possible through the recent develop-
ment of MILC SHAKE [9,10], an algorithm for calculating con-
straints that is capable of efficiently dealing with large systems,
discussed in greater detail below.

We propose a new model to study polymers, best described as
an interacting, freely-jointed chain coupled to a heat bath. For the
sake of brevity, we will refer to it here as REVLD (Rigid, Excluded
Volume, Langevin Dynamics). It is the same as the bead spring
model except that instead of using a FENE potential, the beads are
rigidly constrained to be a constant separation. The improvements
to the Rouse model – interaction and inertial effects – have thus
been retained. Hydrodynamic effects are not taken into account. In
this work, the first stage of the validation of the model, we check
whether the static and dynamic properties of a single chain are
accurately recovered.

2. The model

REVLD consists of representing a polymer chain as a series of
connected beads. Each ‘bead’ represents a statistical unit, generally
many times the persistence length of the molecule, and its coor-
dinates indicate where the mass and forces are concentrated. Each
one follows a Langevin equation,

Fi = mi r̈i = −∇Ui − γ ṙi + di . (1)

Here, the total force is Fi , the mass is mi , and the position is ri ,
where i represents the bead index. Differentiation with respect to
time is denoted by [˙]. The function U is the conservative potential,
discussed below. The last two terms encapsulate the effect of the
environment. The penultimate is a viscous drag contribution with a
strength dictated by the friction coefficient γ . The final term is the
stochastic force in a random direction, represented by a Gaussian
white noise term d. The parameter γ is related to the amplitude
of d by the fluctuation dissipation theorem, which in three dimen-
sions is〈
d(t) · d(t′)

〉 = 6γ kB T δ(t − t′). (2)

The constant kB is Boltzmann’s constant, T is the temperature, and
δ is the Dirac delta [11]. Using the Einstein relation, the diffusion
coefficient is D = kB T /γ N [12].

U in Eq. (1) has two contributions. The first is a repulsive,
shifted Lennard-Jones (L-J) potential, U R .

U R
ij = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6

+ 1

4

]
, ri j � σ21/6. (3)

U R is zero when ri j is greater than 21/6σ . The constants ε and σ
are the L-J energy and length scales, respectively. This force acts
between all bead pairs, serving to enforce excluded volume.

The second contribution to U enforces the connectivity of the
chain. Instead of introducing an inter-bead potential, as is done in
the bead spring model, we force the separation between neighbor-
ing beads to be fixed at some distance l by using constraints in
Cartesian coordinates. To do so, a zero term is added to the po-
tential, following Lagrange’s method of undetermined coefficients,
that takes the form

U C
i =

∑
i→p

λipσip, (4)

where the summation is over each bead p that is connected to
bead i. The λ terms represent the undetermined Lagrange multi-
pliers that are calculated numerically. Each constraint σip is zero
when the constraint is satisfied, so that U C

i is then zero. (Please
see Appendix A.)
Please cite this article in press as: A.G. Bailey et al., REVLD: A coarse-grained model for
The model is in essence equivalent to the bead spring model
except the manner in which the connectivity of the material is rep-
resented: an anharmonic spring versus constraints. The form of the
repulsive potential and the parameters in the results section were
chosen to facilitate direct comparisons between this work and pub-
lished results from single molecule studies using the bead spring
model.

3. MILC SHAKE

The choice to use constraints in a Cartesian representation re-
quires further explanation. There are two approaches one could
consider to hold neighboring sites at a fixed position: formulat-
ing the equations in generalized coordinates and incorporating the
length constraint implicitly in calculations, or working solely in
Cartesian coordinates and applying Lagrange multipliers for the
constraints.

There exists a body of work formulated in generalized coordi-
nates to model rigid polymer systems undergoing Brownian dy-
namics, from which one can draw many parallels to the model
presented here [13,14]. Two downsides to this approach can be
immediately pointed out. First, it is mathematically complicated.
Second, transforming between real space and coordinate space is
necessary for the calculation of real-space forces such as interac-
tions, which is tedious and expensive. It is not a practical means
to model a freely-jointed chain.

The other route is to use a purely Cartesian representation.
Until now, the undetermined Lagrange multipliers in Eq. (4), and
hence the constraint forces, would have to be calculated using
the algorithms SHAKE and RATTLE [7,8]. Improvements have been
made to these algorithms [15,16], but by and large the calculations
are a large proportion of the CPU time. In the development of a
model that aspires to simulate large systems over long time scales,
computational efficiency is a paramount concern.

One can sidestep these issues by using a purely Cartesian rep-
resentation and the new algorithm MILC SHAKE (Matrix Inverted
Linearized Constraints), introduced above [9]. MILC SHAKE is a
numerical recipe to calculate constraint forces in Cartesian coordi-
nates that exploits a commonly encountered architectural feature:
‘bonds’ that are connected sequentially, which we will refer to here
as a linear architecture. This geometry is ubiquitous in problems
addressed by computational physicists. Applications include, but
are not limited to, inextensible biological filaments, alkanes using
the united atom model, and, in the case studied here, models of
polymers. With a linear architecture, the non-linear set of equa-
tions for the Lagrange multipliers can be solved efficiently using
simplified Newton iteration [17]. The algorithm exploits the fact
that the linearized equations form a tridiagonal set that can be
solved in order n operations. MILC SHAKE is summarized in Ap-
pendix A.

Numerical results are presented in Ref. [9] for the case of a
simple linear chain tested in a dynamic simulation of an elastic fil-
ament. The algorithm can easily be extended to the case of the ring
– the Jacobian is a cyclic tridiagonal matrix for a ringed system,
meaning there are two additional elements in the upper right-
hand and lower left-hand corners. To use MILC SHAKE, a cyclic
tridiagonal matrix solver must then be applied to solve for the
constraint forces [18]. Fig. 1 shows the CPU time per constraint
required to calculate the constraint force, as a function of the num-
ber of constraints in the system. Data points are averages of over
1000 time steps. The starting error in the constraints is approx-
imately 0.1%. A ring (squares) is a factor more expensive than a
linear chain (circles); however, the performance of MILC SHAKE is
orders of magnitude better than that of SHAKE for both system
morphologies for the largest polymer chains and a significant fac-
tor better for the smallest ones investigated.
polymers, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.025
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Fig. 1. CPU time per constraint that is required to calculate a constraint force as a
function of the number of system constraints.

As mentioned in the introduction, one motivation for using con-
straints is generally to maximize the total simulation time com-
pared to the CPU wall clock time. The goal is negated if a sig-
nificant portion of the CPU time has to be devoted to actually
calculating the constraint forces. The difference in wall clock time
per time step for the two models reduces to a comparison be-
tween the cost of calculating a constraint force versus an inter-site
force, since all non-bonding contributions to the force on a bead
are the same in both models. Consider that for a constraint force
using MILC SHAKE, the wall clock time is plotted in Fig. 1 (approx-
imately a microsecond). For comparison, we calculated the wall
clock time of a FENE potential force to be approximately 9 μs. Us-
ing our in-house implementation, the wall clock time of REVLD is
smaller than that of the bead spring model by almost an order of
magnitude for an equivalent time-step. We leave our evaluation
general, however, because bonded interactions can amount to a
relatively small fraction of the CPU time compared to non-bonded
forces for high density simulations. Therefore, any savings will de-
pend greatly on the system of interest and the implementation. It
suffices to say that based on our analysis REVLD will conclusively
not increase the wall clock time.

Until now, the MILC SHAKE algorithm has been described, but
only tested on the specialized test case of an elastic filament. It
was speculated that the method is efficient for polymers but not
shown. Here we address these issues by applying it to a more gen-
eral class of problem. MILC SHAKE is incorporated into the REVLD
model, which we use to investigate static and dynamic properties
of both linear and ringed architectures.

4. Results

The data discussed here are intended to confirm known results
from statistical polymer theory that our model must obey to be
valid. Furthermore, results are presented in a manner so that they
can be compared directly to results using the FENE potential pub-
lished in Ref. [1]. Static properties of the single polymer chains
are first confirmed, followed by dynamic properties. We initially
focus on the ideal case, in which the repulsive potential, U R , is
turned off. This we will refer to as a random walk (RW) chain.
The self-avoiding walk (SAW) is recovered when U R is turned on
and excluded volume is taken into account. This is the full REVLD
model, and will be referred to as such in the results.

4.1. Simulation methods and parameters

The equation of motion, Eq. (1), was integrated using the
method described by van Gunsteren and Berendsen in Ref. [19].
Please cite this article in press as: A.G. Bailey et al., REVLD: A coarse-grained model for
For all simulations Boltzmann’s constant, the mass of a polymer
bead, the inter-bead separation, the L-J length scale σ , and the L-J
energy scale ε were set to unity. The temperature for all calcula-
tions was 1.2ε . All length scales are measured in units of σ . The
friction coefficient, γ , is either set to 0.5 or 1.5. We investigated
various chain lengths, in the range of 50–200 beads.

For all simulations the time step was within the range 0.012τ–
0.040τ , where τ is the L-J time scale defined by σ/(mε)1/2. The
largest step sizes were used for the RW model, while the small-
est (0.012τ ) was necessary with the excluded volume interaction.
Comparing to the single-chain studies reported in Ref. [4], the
magnitude of dt is up to five times the step size for the RW and at
least a factor of two and a half larger for simulations with the full
REVLD model. The size of the time step was maximized by con-
firming that the simulation was stable in an NVE ensemble prior to
applying the thermostat. This is the same procedure as that used
by Grest et al. in Ref. [4]. We should point out, however, that in
later work on melts Kremer and Grest used a significantly longer
time-step. The time-step reported in [4] is actually quite a conser-
vative estimate. Using the velocity Verlet algorithm we find that in
fact for the isolated excluded volume chain a time step of 0.012τ
is in fact possible. That is, our algorithm allows the same time-step
when excluded volume interaction is included as the model using
the optimized FENE potential.

Graphs of dynamic properties were averaged over 3000 initial
configurations. The static properties were calculated by averaging
over the same number of uncorrelated states. In this paper, results
are in agreement with theory if the statistical error of the data is
within 3% of the average, where the ‘statistical error’ is the stan-
dard deviation. The amount of elapsed simulation time required
for the molecule to be uncorrelated with its initial configuration
was taken conservatively to be twice the longest relaxation time
τN , also called the Rouse time. This was substantiated by looking
at the correlation function of the end-to-end vector.

4.2. Statics

The ratio of the mean square radius of gyration to the end-to-
end distance of a random walk is 1/6 [12]. For all of the chain
sizes investigated here, we have found this to be the case within
acceptable statistical error. For the ideal case, it is also known that
the ratio of the mean square radius of gyration of a ring to that of
a linear chain of equal number of beads is 0.5 [20]. Our simulation
results for a system of 50 beads are consistent with this value.

With the inclusion of the repulsive potential leading to the full
REVLD model, the chains follow a self-avoiding walk. The ratio of
the mean square radius of gyration to the end-to-end distance for
the SAW is, from theory and our simulations, 1/6. The ratio of
the mean square radius of gyration of a ring to a linear chain is
〈R2

g〉ring/〈R2〉linear ≈ 0.57 with excluded volume [20]. Simulations
of a ring and linear chain of 50 beads are consistent with this
value.

The structure factor for a RW and SAW chain for N = 200 is
plotted in Fig. 2. The two sets of data within the region of im-
portance, specifically where 2π/〈R2〉1/2 	 q 	 2π/σ , should have
different slopes. In this region, from theory S(q) ∝ q−1/ν , where
ν ≈ 0.58 for a SAW and ν = 0.5 for a RW. Guidelines for the the-
oretical scaling are provided, and good agreement is observed for
the RW. The dips in the curves near log(q) = −0.88 and −0.65 for
the SAW and RW, respectively, are a result of the finite size of the
molecule. However, these features reside outside the area of inter-
est.

The radial distribution function shows some structure at small
distances. Notably, for the SAW the RDF is zero until r/σ = 1,
where there is a peak. This distance corresponds to the length
scale of the purely repulsive L-J potential applied to enforce ex-
polymers, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.025
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Fig. 2. Structure factor of a linear chain using the RW and SAW models with N =
200. Guidelines for the theoretical slope are included.

Fig. 3. Radial distribution function of a linear chain using the RW and SAW models
with N = 200.

cluded volume. There is also a small peak indicating a second
nearest-neighbor distance. The RDF of the RW shows some struc-
ture for first and second nearest neighbors, but the plots are in-
dicative of the data one would expect for an amorphous structure.
See Fig. 3.

4.3. Dynamics

Three quantities describe the dynamics of the system. The
first two, listed in Eq. (5), represent the diffusion of single
monomers, and the last is the diffusion of the center of mass of
the molecule.

g1 = 〈[
ri(t0 + t) − ri(t0)

]2〉
,

g2 = 〈[(
ri(t0 + t) − Rc.m.(t0 + t)

) − (
ri(t0) − Rc.m.(t0)

)]2〉
,

g3 = 〈[
Rc.m.(t) − Rc.m.(t0)

]2〉
. (5)

In our notation, Rc.m. is the coordinate for the center of mass, and
t0 is the starting time. From theory, the first quantity, g1, should
scale with t1/2 for times much less than τN . Far beyond τN , g1
should scale linearly with t . The second quantity, g2, should scale
with t1/2 and t0 before and after τN , respectively. The diffusion
of the center of mass, g3, should scale linearly with t beyond the
shortest relaxation time, τ0.
Please cite this article in press as: A.G. Bailey et al., REVLD: A coarse-grained model for
Fig. 4. g1, g2, and g3 of a RW linear chain with N = 200 and γ = 0.5.

Fig. 5. g1, g2, and g3 for a RW linear chain with constant length (N = 200) and
variable friction (γ = 0.5 and 1.5).

Any viable model for a polymer melt would necessarily recover
the scaling behavior of g1, g2, and g3. The correct dynamics for
a random walk using our model was confirmed and is displayed
in Fig. 4. Results from a simulation of a linear chain of 200 beads
with a friction coefficient of γ = 0.5 are plotted. In this report,
both g1 and g2 are averaged over ten interior monomers. Outer
monomers were found to be more mobile, as was also found in
previous studies [1].

Increasing γ results in a smaller diffusion coefficient according
to the Einstein relation; therefore, the graph of g3 is shifted down.
This effect is shown in Fig. 5. For any choice of friction coefficient,
given all other parameters are constant, g2 will plateau at a sin-
gle value for t � τN , as observed. The single monomer diffusion
at t 	 τN is also suppressed, shown by a downward shift in that
region of g1. The molecular diffusion coefficients for the two γ ’s
investigated are calculated from the graphs to be the expected val-
ues of D = 1.2 × 10−2 (γ = 0.5) and D = 4.0 × 10−3 (γ = 1.5),
within 2%.

Fig. 6 compares g2 and g3 for both the RW and SAW for
γ = 0.5. The results are not unexpected. Both have an equivalent
center-of-mass diffusion coefficient. The mean distance between
monomers and the center of mass, indicated by the y-value of
the g2 plateau, is greater for the SAW than the RW, indicating the
chains are swollen.
polymers, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.025
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Fig. 6. g2 and g3 for a linear chain using the RW and SAW models with N = 200
and γ = 0.5.

5. Discussion and conclusions

In this article we have demonstrated that with the efficient
MILC SHAKE algorithm, correct polymer modeling, as proposed
by Kremer et al., is possible using time steps at least as long as
those possible when the bonding interaction between beads is a
FENE potential optimized to allow the maximum time-step. For
cases where physical considerations require a significantly stiffer
spring interaction, a longer time-step should be possible using con-
straints. This is the subject of current research. Here we restrict
ourselves to comparing with the optimal FENE case. The MILC
SHAKE algorithm replaces the evaluation of the FENE interaction
and it is sufficiently efficient that it introduces no computational
overhead in terms of execution speed. These advantages are signif-
icant for single stiff chain studies with implicit solvent. Lipid and
surfactant models, many of which use the bead spring model, are
a large and important sector of this class of systems. Application
of the model to polymer melts is the focus of ongoing research.

All calculations in this paper were performed on a single pro-
cessor, but parallelization of MILC SHAKE (and hence REVLD) is
certainly possible. There are multiple ways to proceed. Techniques
to parallelize all non-constraint forces included in REVLD are by
now standard, so let us focus on the parallelization of the con-
straint calculation. One option is to calculate all forces except the
constraints in parallel, leaving the constraint calculation to be han-
dled in series. The speedup is limited by the fraction of serial
calculations. If one were using SHAKE iteration to calculate the
constraints, this could be up to 10% of the total execution time ac-
cording to Ref. [21]. However, MILC SHAKE requires a substantially
less CPU time, as is evidenced by Fig. 1, making this approach a
straightforward and possibly viable option. Regardless, paralleliza-
tion of MILC SHAKE is feasible using methodology described in
Ref. [21] to iteratively solve a coupled set of linear equations.
Whether a parallel implementation would out perform models that
use a bonding potential (which are trivially parallelized) is how-
ever questionable.

We should stress that REVLD would not be a feasible coarse-
grained model for polymers without the development of MILC
SHAKE for calculating constraint forces in a Cartesian representa-
tion. In Ref. [9] it was tested for a very simple system with limited
applicability. That represents a best case scenario. Here we show
that the method can still have applications for much more gen-
eral problems, those with more realistic Hamiltonians combined
with a stochastic thermostat. Consequently, this work illustrates
how MILC SHAKE can be used to contribute to existing simula-
Please cite this article in press as: A.G. Bailey et al., REVLD: A coarse-grained model for
tion methods. Additionally, we expect it to aid in the development
of new models for large scale simulations using constraints that
were previously infeasible.
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Appendix A. MILC SHAKE algorithm

Let us start with a single molecule. The position of bead i at
time t is denoted by ri(t). The aim is to rigidly constrain bonded
pairs of beads to be a specified distance apart. The constraints can
be written in the form of n equations, where n is the number of
bonds (constraints). Defining ri j = ri − r j as the bond vector and li j
as the bond length, they are

σi j
({

r(t)
}) = r2

i j(t) − l2i j = 0. (A.1)

Eq. (A.1) only holds when the magnitude of the bond vector equals
the specified bond length. Using Lagrange’s method of undeter-
mined multipliers [22], we can enforce the constraint equations
while integrating Newton’s laws. After the introduction of a zero
potential term, the equation of motion in Cartesian coordinates is

mi
d2ri(t)

dt2
= − ∂

∂ri

[
U

({
r(t)

}) +
∑

p

λipσip
({

r(t)
})]

, (A.2)

where the summation is over all beads, indexed by p, connected
to bead i. U ({r(t)}) is the potential energy of the system, and mi
is the mass of bead i. The λip terms represent the undetermined
Lagrange multipliers between the two indexed beads.

We can write the position after a time step �t as the sum of
the unconstrained positions after applying all forces except con-
straints ({r̃}) plus the correction due to the constraint forces ({FC }).
To order �t2, the updated positions are

ri(t + �t) = r̃i(t + �t) + �t2

2mi
FC

i (t). (A.3)

These forces act along the bond vectors. Following from Eq. (A.2),
a constraint force takes the form

FC
i (t) = 1

�t2

∑
p

λip
∂σip({r(t)})

∂ri
= 2

�t2

∑
p

λiprip(t). (A.4)

The factors of �t are absorbed in the multiplier for convenience.
For brevity, the position-dependence of the force has not been
written explicitly. Now the updated positions are

ri(t + �t) = r̃i(t + �t) + 1

mi

∑
p

λiprip(t). (A.5)

Substituting Eq. (A.5) into Eq. (A.1), we arrive at the system of n
equations that we need to solve:

σi j = 0 =
[

r̃i j(t + �t) + 1

mi

∑
p

λiprip(t)

− 1

m j

∑
q

λ jqr jq(t)

]2

− l2i j . (A.6)

The indices p and q cycle through all beads bonded to beads i and
j, respectively.

MILC SHAKE is an efficient algorithm for solving this set of
equations, developed by Bailey et al. [9]. This method applies to
simple linear and ring architectures.
polymers, Computer Physics Communications (2009), doi:10.1016/j.cpc.2009.01.025
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Algorithm 1. Pseudo code of MILC SHAKE, given a predefined tol-
erance τ0.
FOR all molecules

Calculate J, δ0, σ̃ 0

LOOP
Solve Jλk = σ̃ k

Calculate the current positions, {rk}, using λk

Calculate δk({rk})
Add δk to σ̃ k

FOR all constraints
Calculate τi j using {rk}

END FOR
IF max(τi j) � τ0

SAVE current positions, {rk}
EXIT LOOP

END IF
Increment index k

END LOOP
END FOR

To solve Eq. (A.6), we use a Newton-like method. The proce-
dure involves first calculating the n × n Jacobian. Restricting our
attention to a linear architecture, it is

Ji,i−1 = −2

mi
r̃i,i+1(t + �t) · ri−1,i(t),

Ji,i = 2

μi,i+1
r̃i,i+1(t + �t) · ri,i+1(t),

Ji,i+1 = −2

mi+1
r̃i,i+1(t + �t) · ri+1,i+2(t), (A.7)

where μi j is the reduced mass of two beads i and j defined as
μi j = mim j/(mi + m j). The first and last equations, representing
the end bonds, only have a diagonal and one off-diagonal compo-
nent. Explicitly, they are

J1,1 = 2

μ1,2
r̃1,2(t + �t) · r1,2(t),

J1,2 = −2

m2
r̃1,2(t + �t) · r2,3(t),

Jn,n−1 = −2

mn
r̃n,n+1(t + �t) · rn−1,n(t),

Jn,n = 2

μn,n+1
r̃n,n+1(t + �t) · rn,n+1(t). (A.8)

All other matrix elements are zero. The Jacobian is then used to
solve the system of linear equations

σ̃
({

r̃(t + �t)
}) = Jλ, (A.9)

where σ̃ is the vector of n constraint residues.
An iterative procedure is required to converge to the correct

values of the vector λ. We use a simplified Newton iteration, the
Chord Method [23], to do so. On the first iteration, Eq. (A.9) is
solved “as is” for a first approximation to the solution. The n-di-
mensional vector of instantaneous residues at iteration k, defined
Please cite this article in press as: A.G. Bailey et al., REVLD: A coarse-grained model for
as δk , is then added to σ̃ k−1 to form the sum of the constraint
residues leading up to the current iteration, σ̃ k . The δk term ap-
proximates the non-linear contribution and tends to zero in subse-
quent iterations, as required for convergence. The iterative proce-
dure is therefore

Jλk = σ̃ k = σ̃ k−1 + δk (A.10)

δk
i,i+1 = rk

i,i+1(t + �t)2 − l2i,i+1, (A.11)

where the set of vectors, rk
i,i+1(t +�t), are the bond vectors calcu-

lated at iteration k using the current values of the constraint forces
to update the bead positions. The Jacobian is calculated only once
in this procedure. The procedure is summarized in pseudo code in
Algorithm 1.

The cost of a simplified Newton iteration is generally order n3,
corresponding to the cost of solving Eq. (A.10) every iteration.
However, the Jacobian of this set of equations – when they are
ordered sequentially, matching their relative position along the
contour of the chain – is of a very special form: it is tridiagonal.
Inverting a tridiagonal matrix can be done easily and efficiently in
order n operations [18]. This being the case, the cost of the algo-
rithm is order n.
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