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Abstract

We describe a “caterpillar” hydrodynamic model for accurately calculating the

hydrodynamic friction force on microscopic slender cylindrical filaments. Using the

method we show that, if the filaments are charged, applying a circularly polarized

electric field causes them to align along the axis of the field. The field strengths and

frequencies required are easily realizable experimentally. We propose that this is a

practical method for aligning filaments such as microtubules and functionalized carbon

nanotubes. This is an important requirement for many nanotech applications. (PACS:

87.16.Ka,05.45.a, 46.32.+x, 47.15.Gf)
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Many slender microscopic filaments display remarkable properties. Notable examples

are carbon nanotubes and biological fibers, such as actin and microtubules. In cells, the

latter provide both strength and a means of intra cellular transport. They act as “tracks”

along which nano-scale motor proteins process, transporting cargo such as vesicles and large

proteins. There is considerable scope for applying molecular motors as components in nano-

devices. For many nanotech applications manipulating the orientations of these types of

filaments is a requirement. That is, imparting directionality to an otherwise disordered

system. This is not straightforward. For example, although microtubules possess a dipole

moment the static electric field strength required to align them exceeds that at which they

simply disintegrate [1]. A greater degree of success has been achieved on surfaces using

kinesin and polarity-specific antibodies for immobilization prior to the application of external

fields [2, 3]. However, as well as the fact that they are charged, one can also exploit the fact

that filaments are normally dispersed in a viscous environment. This too influences their

behavior [4, 5, 6, 1]. Notably, if they are subject to a force that generates translational motion

(gravity or an electric field, for example) they will tend to orientate in a plane perpendicular

to that force.

The origin of this effect is the interplay between hydrodynamic friction and the bending

elasticity. That is, the elasto-hydrodynamics of the problem. In short, when one allows for

the motion of the solvent caused by the motion of the filament, the friction it experiences is

higher towards the ends than in the middle. This causes it to bend slightly. The bending

in turn introduces a force anisotropy in the form of a torque leading to rotation and a

re-orientation into the perpendicular plane. Unfortunately, within the plane there is no

alignment and uniform translational motion will also induce significant inhomogeneity in

the system. The question we address here is: is there some other way of exploiting this effect

that can actually align filaments to a particular direction? Specifically, we consider a filament

in a circularly polarized field. Such a field conveniently avoids net translation, but does the

elasto-hydrodynamic aligning effect persist? If so, how does the filament quantitatively

respond to such a field? To answer these questions we use computer simulation. Our first
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requirement is therefore a numerical model that captures accurately all the relevant effects.

We begin by considering how one constructs a tractable but sufficiently realistic numer-

ical model to solve the problem. First consider a filament of length L discretized into n

beads. The distance between neighboring beads is fixed, meaning that the model filament is

inextensible. Consequently, the bead separation is given by b = L/(n − 1). As the filament

deforms elasticity will penalize deviation from the lowest energy conformation. Assuming

there is no intrinsic curvature, according to elasticity theory the elastic energy Ue in the

continuum limit is

Ue =
α

2

∫ L

0

κ(s)2ds (1)

where α is the bending modulus and κ(s) the curvature at a point a distance s along the

filament. The Hamiltonian of our model system is derived by introducing a bending potential

between all sets of three consecutive beads and then regarding the model as a discretization

of Eq. (1). The inextensibilty constraint is imposed using the MILC SHAKE algorithm [7].

Filaments of fixed length are effectively infinitely stiff while retaining flexibility. The reason

we chose this approach is that the type of filaments we consider here are structured on

the nanometer scale and cannot accommodate significant axial extension. This provides a

reasonable description of force extension behavior [8, 9].

The most difficult part of the problem is now determining the force exerted on the

filament by the surrounding fluid, given that the movement of the filament itself perturbs

the fluid. Since the filaments we are considering are microscopic in length, it is reasonable to

neglect inertial effects. In this limit the fluid flow equations are linear. However, modeling

the interaction of the fluid and filament at an explicit fluid filament interface would be a

computationally daunting task. An approximate approach couples the filament and fluid

motion by requiring that beads in the model act as Stokeslets (point forces acting in the

fluid)[10]. They experience a hydrodynamic frictional force given by FH = −γ0 (v − vH),

where v is the velocity of the bead and vH is the induced fluid velocity at its location. The

parameter γ0 is then the bead friction coefficient. In this model the local fluid velocity vH

is now a linear combination of the velocity fields generated at that point by each of the
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Stokesletts [5, 11, 12], leading to a hydrodynamic force on bead i

FiH = −γ0vi +
γ0

8πη

∑

i6=j

(

Fj

|rij|
+ Fj ·

rijrij

|rij|3

)

. (2)

The constant γ0 can also be written in terms of the friction exerted by a sphere of radius

a, γ0 = 6πηa, where the constant η is the shear viscosity. We now have a parameter in the

model that is the ratio of the bead spacing to the hydrodynamic radius a. The question

is now, what value do we choose for a/b? A popular choice is the “shish kebab” model,

a/b = 1/2. If the hydrodynamic radius is considered equivalent to a real radius this models

a filament of touching spheres. That is, it is an approximation to a filament with aspect

ratio 1/(n− 1). Let us consider this in more detail by taking a filament that is aligned with

the x-axis spanning the interval x = [−1, 1], where x(= s/l) is the dimensionless contour

length and L = 2l. The hydrodynamic force in terms of x for the case of an applied external

force density (f y = F y
j /b) acting in the −ŷ direction is

FH(x) = −γ0vy(x) −
3af y

8π
ln

(

(1 − x)2)

(βb/l)2

)

, (3)

where β = e−k and k is the Euler-Mascheroni constant defined by

k = lim
m→∞

(

m
∑

j=1

1

j
− ln(m)

)

≈ 0.5772. (4)

In the steady state the total external force acting on the body equals the total hydrodynamic

force, and the filament moves with some terminal velocity U . Using Eq. (3) to calculate the

total hydrodynamic force (F y) in the ŷ direction, the average friction coefficient is

γ⊥ =
F y

U
=

4πηL

ln (L/(βb)) + 2b
3a⊥ − 1

+ O
(

ln−3(L/(βb))
)

. (5)

The exact result from slender body theory is also of this form, but the constant depends on

the shape of the filament [13]. For a cylindrical geometry, the result is

γ̄⊥ =
4πηL

ln (L/r) + ln(2) − 1/2
+ O

(

ln−3(L/r)
)

. (6)

Therefore, only when the filament radius is considered to be r = βb ≈ 0.561b and when

the hydrodynamic radius is chosen to be a⊥ = 4b/(3(2ln2 + 1)) ≈ 0.559b is this model in
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agreement with theory to the order of error in the equations. This value is close to, but not

equal to, the shish kebab value.

Now we consider motion parallel to the axis, the average friction coefficient to leading

order by taking the continuum limit of our discrete model is

γ‖ =
2πηL

ln (L/(βb)) + b

3a‖ − 1
. (7)

whereas, from theory, for a cylindrical geometry

γ̄‖ =
2πηL

ln (L/r) + ln(2) − 3/2
. (8)

So the model only matches theory when the filament radius is considered to be r = βb ≈

0.561b, and the hydrodynamic radius is chosen to be a‖ = 2b/(3(2ln2 − 1)) ≈ 1.726b. In

addition, a similar analysis shows that only with these choices of hydrodynamic radii is

the correct variation of the friction coefficient along the length of the filament recovered to

O(ln−3 (ǫ)) in the slenderness parameter ǫ = r/l. This is crucial, because it is this variation

in friction along the length that causes a flexible filament to bend when it is set in motion

and this is the origin of the effect we are considering here. We conclude that the agreement of

the Stokeslett model with analytical results is conditional upon choosing the hydrodynamic

radius and hence bead friction coefficient to be the tensor

γ⊥
0

= 6πηa⊥ = 8πηb (2 ln 2 + 1)−1

γ
‖
0

= 6πηa‖ = 4πηb (2 ln 2 − 1)−1 . (9)

That is, the hydrodynamic radius is different in the parallel and perpendicular directions.

This unique parameterization in terms of Stokesletts, appropriate for a cylindrical filament,

gives our model its name – the hydrodynamic shape of the filament is more reminiscent of

a caterpillar than a shish kebab (see Figure 1). The final form of the hydrodynamic force is

now

FiH = −
(

γ⊥
0
n̂n̂ + γ

‖
0
p̂p̂
)

· (vi − viH) . (10)

The vectors n̂ and p̂ are the unit vectors normal and parallel to the axis, respectively.
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Figure 1: A schematic of a) caterpillar and b) shish kebab hydrodynamic filament shapes.

The caterpillar simulation model is relevant for a broader range problems than the align-

ment question studied here. Examples range from micro-organism motility [14, 15] to the

sedimentation behavior of paper pulp [13]. In the limit that the inhomogeneity of the friction

is neglected, Eq. (10) in fact reduces to “resistive force theory” [16]. This accurately predicts

the swimming speeds of spermatozoa [15]. Note that the constants from the stokselett model

that must be matched to recover the correct result depend on the cross-sectional geometry of

the filament. Here we specialize to a cylindrical form, but this is not a necessary restriction.

Other geometries can be modeled.
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Figure 2: A trace of the ends of the filament during alignment process after subtracting the

center of mass motion for three different field frequencies (B = 1.2).
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We now turn to investigating the possibility of aligning charged filaments using a circu-

larly polarized electric field. Microtubules are charged biofilaments that have been shown to

respond to moderate, experimentally accessible electric fields [1]. Carbon nanotubes, on the

other hand, are uncharged but can be functionalized to give an effective electrical charge [17].

We carried out a series of simulations using the model described above in experimentally

accessible regimes of parameter space. The functional form of the time-dependent applied

electric field is

Ey = E cos (2πft) ŷ

Ez = E sin (2πft) ẑ, (11)

where the constants E and f are the field magnitude and frequency, respectively, and t the

time. In all cases we set L = 1 and the number of beads in the model to 80. Following the

argument above, we are considering a cylindrical filament with aspect ratio ∼ 1 : 80. For a

microtubule (diameter 25 nm), this would typically correspond to a length of a micron. We

define a dimensionless force B = L3Eq̃/α that characterizes the magnitude of the electric

forces to the elastic forces. Here, q̃ is the charge density of the filament. When B ≫ 1,

significant deformation is expected, whereas when B ≪ 1 elastic forces dominate and the

filament will remain predominantly straight. We can estimate experimentally accessible

values of B for microtubules. From Ref. [1], the average length L was 5 µm, the flexure

α is of the order 10 pNµm2, and the effective linear charge density was measured to be

q̃ = 280 e/µm. The microtubules remained stable in a field of 20 V/cm. Using these

values, we calculate that B ∼ 1 is easily achieved experimentally. Experiments carried out

by van den Heuvel et. al actually achieved much higher values, and pronounced bending

was indeed observed [6] . In our simulations B is near the modest value of unity. We also

define a characteristic time τT = γ̄⊥L/Eq̃, which is the amount of time it takes the filament

experiencing an external field of magnitude E to translate transversely a distance of its

length.

The simulations predict that a charged body placed in the field given by Eq. (11) gyrates

in the yz plane following the direction of the applied field. The center of mass motion occurs
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concurrently with a hydrodynamic orientation due to bending of the filament. Traces of

the location of the endpoints of the filament after subtracting the center of mass motion

for representative simulations are shown in Figure 2. Here, the filament is initially offset

at an angle of 45 degrees in the xy plane, but in time it aligns itself with x̂, perpendicular

to the plane of the polarized field. An animation of the typical dynamics can be viewed in

Ref. 1. Our results therefore suggest that circularly polarized electric fields are a indeed a

possible means for aligning charged filaments. Before we can propose that the method is

also practical there are other things to consider.

The first is as follows. The filament reorientates and, once it is aligned, its motion resem-

bles sedimentation constrained to the surface of a cylinder. If the radius of this cylinder is

too large then there is pronounced rotational motion and this is undesirable. The magnitude

of this steady state gyration radius R can be estimated using simple scaling arguments. We

expect 2πR ∼ ω/f , where ω is the tangential velocity. When the frequency of the electric

field is chosen to be f = τ−1

T and ω = L/τT , R ∼ L/2π, independent of B the field strength.

This expression is exact for B → 0, where bending is insignificant. We further confirmed

from simulations, with a dimensionless force ranging from B = 0.08 − 1.6, that the expres-

sion for R remains sufficiently accurate for values of B around unity to provide a reasonable

estimate for the spatial extension of the rotation of the filament during the alignment pro-

cess. From this we can conclude that, so long as the frequency is around τ−1

T or higher, the

rotation can be localized to lengths of the order of the length of the filament.

To now quantify the time scale of hydrodynamic alignment, we define the hydrodynamic

alignment time τH as the time taken for the angle between the filament axis and x̂ to

change by ten degrees. The first parameter we consider is the magnitude of the frequency

of the applied field. In the limit where f ≪ τ̄−1

H , where τ̄H is the hydrodynamic alignment

time in a static field (f = 0), we recover the results discussed in Ref. [5]. As we increase

the frequency while keeping B constant, the alignment time increases. This dependence is

shown in Figure 3. The filament spends an increased amount of time changing orientation

1http://www.cmth.ph.ic.ac.uk/people/aimee.bailey/movie.mov (also *.avi)
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Figure 3: Hydrodynamic alignment time, τH , as a function of frequency (B = 0.8).
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Figure 4: Hydrodynamic alignment time, τH , as a function of the dimensionless field strength,

B.

to adjust to the alternating direction of the field. The result is that when the frequency is

too high, the filament takes an impractically long amount of time to align. So long that the

effect of diffusion cannot be ignored and a deterministic simulation is no longer valid (see

below). When the frequency is approximately τ−1

T then, for B ∼ 1, the alignment time is

(using values for microtubules reported in Ref. [1]) τT ∼ 1s. That is, a modest frequency of

one cycle per second – an experimental set-up straightforward to implement.

The dependence of τH on the dimensionless field strength B is shown in Figure 4. One

can observe two scaling regimes. For low B’s, the observed relationship is τH ∼ γ⊥/F̃B,
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which is consistent with that observed in Ref. [5] for alignment in a static field. It could be

predicted by noting the analytical expression for the torque from Ref. [18] scales with ∼ F̃B.

For high B’s, the hydrodynamic alignment time obeys a different scaling relationship: τH

actually increases with B. This is because the frequency for these simulations is chosen to

be proportional to τ−1

T , so as B increases, so does the frequency and therefore the alignment

time, discussed in the previous paragraph. The crossover of scaling behavior therefore occurs

where f−1 ∼ τ̄H .

Other forces are present that will compete with the hydrodynamic forces driving the

alignment. Can these be ignored? As long as the hydrodynamic alignment time is shorter

than all other time scales, hydrodynamic alignment will dominate these effects. In reality

thermal forces act to randomize its orientation. The time scale for rotational diffusion is

roughly τD ∼ γ⊥L2/kT . We can neglect this when τH/τD ∼ L/B2λ ≪ 1, where λ is the

persistence length (λ = α/kT ). For a 5 µm microtubule, this condition is satisfied as long

as B > 0.1. Additionally, microtubules have a dipole moment along their length, reported

in Ref. [1] to be del ∼ eL. The time scale associated with the alignment of the dipole with

the field is approximately τd ∼ γ⊥L2/delE. To ensure that this is negligible requires that

τT /τd ∼ del/q̃L
2 ∼ 1/280L ≪ 1. Consequently, for a microtubule longer than a micron,

dipolar reorientation should also be negligible.

A final complication is the presence of other filaments. The analysis up to this point

has focused on a single filament whereas, in reality, there will likely be others within close

proximity. Do neighbors hinder alignment? We considered the scenario of two filaments

separated by a distance d, exposed to the same field given by Eq. (11). At the start of the

simulation, one filament is aligned with the x̂ direction, and the second is tilted at an angle

of 60 degrees in the xy plane. The alignment time was measured for multiple separations.

In the regime where d/L > 1, the filaments behave as isolated entities. This is consistent

with the results from studies of cooperative motion in a static field carried out by Llopis et

al. [19]. For our purposes, it suffices to say as that as long as the solution is at a low enough

concentration, neighboring filaments should not inhibit alignment.

10



To conclude, the caterpillar hydrodynamic model predicts that it is practical to align

charged filaments in a prescribed direction using a circularly polarized electric field. The

model also gives the optimal parameters for achieving this alignment. We hope that this will

motivate experimental studies and ultimately provide a useful tool for nanotech applications.
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