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Abstract

The long-term goal of this research is to model the dynamics of many interacting, lin-

ear polymer chains in the bulk and at interfaces. The mechanical behavior is of primary

interest, motivating a model that will permit access to system sizes greater than a few cu-

bic nanometers and timescales on the order of milliseconds. Although molecular dynamics

and Monte Carlo methods have been successfully employed to address many questions of

polymer physics, the activation volumes for the molecular processes of interest far exceed

approachable system sizes, given current computational technology. Continuum models

have also been utilized; however, they fail to incorporate the molecular detail necessary

to capture the physics behind phenomena resulting from long-chain molecular architec-

ture, particularly at surfaces. One can hope to simulate the relevant mesoscopic and

macroscopic processes by forgoing the inclusion of atomistic detail yet retaining tertiary

structure of the molecules. A model is investigated here in which a polymer molecule is

approximated as an elastic filament. The theoretical development of the resultant curve

dynamics are described in detail.

1



Contents

1 Acknowledgements 4

2 Introduction 4

3 Background 5

3.1 Brief introduction to polymer science . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Simulations of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Space curve Formalism and Geometrical Relations 9

4.1 Serret-Frenet relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Relation between α and contour length . . . . . . . . . . . . . . . . . . . . . . . 10

5 Dissipative Curve Dynamics 10

6 Evolution of g, κ, τ , and the Serret-Frenet Frame 11
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9.1.1 Determination of ġ and ˙̂t . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2 Introduction

Pick any new piece of technology today and one can show how it almost invariably depends

on polymers. Their development was largely driven by their desirable mechanical properties,

namely synthetic rubbers for tires, but now the field has evolved to the point where they are

serving nearly every material function. Organic semiconductors are replacing solid state mate-

rials to make organic light emitting diodes (OLEDs) [1, 2]. Short-chained polymers are being

used for their birefringent optical properties for liquid crystal displays (LCDs) [3]. Adhesives

are widely polymer based [4]. Their mechanical properties are more desirable than ever before.

Combined with their light weight, plastics are an advantageous alternative to structural metals

such as aluminum and steels for the aerospace industry [5, 6, 7, 8].

Plastics are indeed ubiquitous, but not necessarily in a bulk form. Any device which utilizes

polymers will inevitably have multiple interfaces. Materials behave much differently when in

a constrained situation such as near a surface, leading to distinct properties [9, 10, 11]. For

instance, the useful mechanical attributes that are of interest to the aerospace industry are

exhibited in nanocomposites, made by adding nanoparticles to a polymer matrix. When a

high enough volume fraction of particles has been added, the majority of the matrix is in a

constrained, non-bulk state. This coincides with when they exhibit an increased strength and

toughness [12]. Very little is known about the interfacial processes responsible for this change of

reaction, in part because the large systems are difficult to simulate with conventional methods.

We hope that research described herein will provide a means to narrow this gaping hole in

current knowledge. We believe that we will be able to study the mechanical and interfacial
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properties by simulating a coarse-grained model system. In doing so, we can hope that in the

future stronger adhesives can be made, longer-lasting OLEDs and LCDs be built, and more

environmentally-friendly structural materials may be designed for high performance applica-

tions.

3 Background

3.1 Brief introduction to polymer science

Polymers barely need an introduction. As we all know, their molecular structure is formed by

repeating a monomer unit many times in succession, where each is attached to one another by

strong covalent bonds. A polymer’s identity and properties depend upon the chemistry of the

repeat unit. Examples of natural polymers are rubbers, cellulose, DNA, and proteins. Synthetic

polymers include commercial plastics such as nylon, kevlar, teflon, and the many derivatives of

polyethylene.

Plastics are notorious for having both liquid-like and solid-like properties. At a high tem-

perature, a plastic is in a viscoelastic melt, or rubbery state, with properties similar to that of

silly putty — having mechanics which are highly strain-rate dependent with important relax-

ation times extending over very long time scales. As the temperature is lowered, the material

experiences a second order phase transition referred to as the glass transition, occuring at a

temperature (Tg), where the molecules lose mobility and become rigid, freezing the material in

a particular configuration. Although we tend to think of plastics as amorphous, crystallization

can actually take place in some systems before the Tg is reached. Upon cooling a partially-

crystalline sample below the Tg, the material is then left frozen in a composite of crystallized

regions in a matrix of glass. The Tg — and the Tm of crystals if they are present — is de-

pendent upon the architecture, molecular weight, and chemical structure, in addition to the

history of the sample [13, 14].

Molecular weight, or chain length, induces additional effects. At small molecular weights

in a concentrated solution or a melt, individual chains predominantly stick to themselves. The

resultant behavior is described by Rouse dynamics, where the molecules are short enough to be

treated as an effective colloid undergoing Brownian motion. Above a critical molecular weight,
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melts are pictorially described as a bowl of tangled spaghetti. The “tangles”, an earmark

of their unusual, elongated architecture, are important topological constraints referred to as

entanglements. Current research supports the theories where entanglements are responsible

for the viscoelastic properties of the melt state and the mechanical properties, such as crazing

and strain hardening, of the glassy state [13, 14, 15, 16, 17, 18]. The most widely accepted

theory describing the dynamics of polymers in an entangled melt state is the tube model, where

the movement of polymer chains is restricted to a canal, an enclosure formed by the presence

of other neighboring chains. The molecules resultantly move by a process called “reptation”

through these arteries.

There are an infinite number of variations to the characteristic image of linear polyethylene

that first comes to mind. One can add a cross-linking agent to create a network polymer

referred to as a thermoset. Depending upon the type of synthesis, the chain architecture may

already be branched, inhibiting any form of crystallization or order. The mechanical properties

can be drastically changed by adding nanoparticles, to form a composite. The chemical identity

of the repeat unit can be tuned for hydrophilicity, greater tensile strength, magnetic response,

or better corrosion resistance, to name a few. Recently, a great deal of resources have been

put toward research in the area of conducting and semi-conducting polymers. The potential is

limitless.

One can say a great deal more about all of the branches and sub-branches of polymer

science, but let us now restrict ourselves to the area of interest. Let us focus on the mechanical

behavior of polymers of a linear architecture.

3.2 Simulations of polymers

Simulations have played an increasingly important role in the study of polymers. Permitted by

the steadfast advancement in computer technology, computational modeling has established its

place as a third branch of physics, alongside theoretical and experimental work. Simulations

offer a new route towards understanding and predicting physical properties. Through modeling,

we can now determine the intimate behavior of systems that are indistinguishable by the finest-

tuned laboratory probe. Theories can now be tested and experiments interpreted in the virtual

world.
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Polymer science presents its own set of challenges to the field of computational physics.

In particular, relevant processes take place over a large spectrum of size and length scales

[15, 16, 17]. Relaxations times take place anywhere from 10−13 to 10−3 seconds, or days or

weeks for a process such as creep. A ballpark number for an adequate system size needed

to study a mechanical process can be determined by calculating the activation volume. For

crystallographic, plastic events, that volume ranges from 3-7 nm3 [19]. For a process in an

amorphous, polymeric structure, one would expect this number to be larger since the concerted

movement would have to extend over a larger amount of space.

Molecular dynamics (MD) has been used with great success. One of the first and most

notable simulations was the observation of the transition from Rouse to reptation dynamics

observed by Kremer, et. al., after 1500 hours of supercomputer time in 1988 [20]. Computers

have come a long way since the late eighties, and other prominent research using MD has been

put forward; however, it will be a long time yet before one can adequately model systems more

than a few cubic nanometers in size for longer than microseconds, while retaining atomistic

detail.

Coarse-grained models have also been proposed [24, 25, 26, 27, 28]. In some models, four to

five molecular repeat units of a polymer have been treated as psuedo-particles and the dynamics

of the system then investigated. The scaling behavior of these systems helps to render such

approximations valid [18]. Further approximations have to be made in order to hope to explore

problems happening in larger systems over longer time periods.

Monte Carlo (MC) has served as another powerful technique. New advanced algorithms

have been conceived to treat dense systems with atomistic detail such as the concerted-rotation

(ConRot), the configuration bias (CBMC), and the hybrid Monte Carlo (HMC) algorithms [21].

State of the art methods, however, do not yet approach polymers of realistic length, highlighting

the difficulties of treating dense, constrained systems. Coarse-grained models treating molecules

as a series of beads held together by springs in the spirit of Kremer and Grest [22] have also

been investigated [23]; however, lattice models have to be used to make them computational

feasible.

At the other end of the spectrum, some mechanical properties have been effectively studied

using continuum mechanics [29]. Finite element method (FEM) in particular has been em-
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ployed, where the plastic is treated as completely homogeneous, neglecting the chain nature of

the material. Improvements in some models have been made such as accounting for anisotropy

and structural rearrangements; chain texture can even be modeled throughout the course of

a simulation [30, 31, 32]. However, FEM fails when one attempts to model an interface [33].

The molecules next to a surface undergo constrained rearrangements under stress, and the re-

sultant mechanical properties differ greatly from those of the bulk. In some nanocomposites,

where there is an extremely high surface to volume ratio, the organic matrix displays no “bulk”

properties but is completely dominated by interfacial effects. FEM does not take this into

account at present, but it is a technique which could be improved by incorporating results from

microscopic mechanical experiments, such as the virtual ones proposed here.

In the hopes of creating a successful mesoscopic model to study the mechanical processes

taking place in the regime between that now accessible by MD and continuum mechanics, it

is evident that the tertiary structure of the molecule must be retained to capture the physics

resulting from chain-like structure but gross approximations made to enhance computational

viability.

3.3 Our approach

A technique used in biophysics to study bacterial cilia and stiff proteins is to approximate the

object as a thin elastic filament and to model the dynamics due to elasticity, while including

other forces that are of interest [34, 35, 36, 37]. This approximation is referred to as the Kratky-

Porod wormlike chain model [38]. By treating molecules as continuous curves, atomistic detail

is neglected but the long-chain nature of the material is preserved. For our case, the elastic

filament is going to be assumed to have no cross-sectional area, reducing the problem to that

of modeling space curve motion.

The ultimate goal of this research is to use this mesoscopic model to study size regimes, and

their corresponding processes, between those accessible by finite element method and coarse-

grained MD. Eventually, we hope to simulate a system of many molecules, although here

we focus on the motion of one. In the remainder of this paper, I outline the theoretical

developments of space curve dynamics to date. Some results are not applicable to our system

of interest but could have significance in interfacial or biological systems. Theoretical results
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are predominantly expressed for the 3D case but in parts are written out explicitly for 2D. Case

studies are largely 2D for clarity.

4 Space curve Formalism and Geometrical Relations

Consider a finite, continuous space curve in R3 parameterized by α, a general spatial coordinate,

which spans the domain [αmin, αmax]. The coordinate α can be related to contour length by a

metric, discussed below. Let us start with an arbitrary initial configuration. At time equals t0,

the position of the curve is given by r(α, t0), and the corresponding velocity is ṙ(α, t0). Within

this paper, boldface type signifies a vector of the dimension of the space, and the {̇} denotes

differentiation with respect to time.

At any coordinate value, α0, one can define a local reference frame consisting of the or-

thonormal set of three vectors: the tangent, normal, and binormal. The tangent vector (̂t)

points in a direction parallel to the curve; the normal vector (n̂) points in the direction of the

second derivative; and the binormal vector (b̂) is calculated by taking the cross product of the

tangent and normal.

4.1 Serret-Frenet relations

Given some initial configuration, the local reference frame, {t̂,n̂,b̂}, can be defined at any point

along the space curve. If we find the local reference frame at n points equally spaced along the

curve, the relationship between two neighboring reference frames, at αi and αi+1 for instance,

will depend on how much the underlying space curve is bending and spiraling.

There are two quantities which are used to characterize how the local reference frame rotates

as one moves along the the space curve. The first, κ(α,t), represents the bend within the

osculating plane, which is the plane formed by the tangent and normal vectors,
(

t̂ × n̂
)

. The

second quantity, τ(α,t), is the bend out of this plane. For example, a circle in 3D space has a

constant κ as a function of α and a constant, zero-valued τ . A helix, on the other hand, has

both constant and non-zero values of κ and τ .

The equations relating κ and τ and { t̂(α,t), n̂(α,t), b̂(α,t)} are the Serret-Frenet relations.

Written in equation form, they are the following:
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∂r

∂α
= t̂,

∂t̂

∂α
= κn̂,

∂n̂

∂α
= −κt̂ + τ n̂,

∂b̂

∂α
= −τ n̂. (1)

Expressed in terms of a matrix, we have:

∂

∂α















t̂

n̂

b̂















=















0 κ 0

−κ 0 τ

0 −τ 0





























t̂

n̂

b̂















. (2)

These equations hold at any α and at any instant t. In addition to being continuous, the space

curve must also have continuous first and second derivatives, so that κ and τ are well-defined

at every point.

4.2 Relation between α and contour length

It is important to note here what α, κ, and τ actually represent. As discussed above, equations

written in terms of the general spatial coordinate, α, can be related to their corresponding form

written in terms of contour length, s, by a metric. The metric is essentially a rule stick, telling

the physical distance that is represented by a distance expressed in terms of α. Mathematically,

it is determined by g = (rα · rα). Correspondingly, κ and τ in this report do not represent real

curvature and torsion, but are related to these values, respectively, by κ̃ = κg−
1

2 and τ̃ = τg−
1

2 ,

since g−
1

2
∂

∂α
= ∂

∂s
. The Serret-Frenet relations are typically expressed in terms of κ̃, τ̃ , and

derivatives with respect to contour length; however, they are just as true in the more general

form written above. By treating the metric explicitly, we are preserving the opportunity to

model extensibility and growth. We will return to the contour length representation in Section

8.2.

5 Dissipative Curve Dynamics

We would like to model an elastic filament in the low-Reynolds number regime, where dissi-

pation dominates and inertial terms can be neglected [36]. The equation of motion for the

underlying space curve can be derived by using the principle of least action [39]. One can do

so in a dissipative framework by using a Raleigh dissipation function, R. Given R and some
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Lagrangian, L, the equation of motion is,

d

dt

∂L

∂ṙ
− ∂L

∂r
= −∂R

∂ṙ
. (3)

R is given by,

R =
ζ

2

∫ αmax

αmin

g
1

2 |ṙ|2 dα. (4)

Using this form of R and neglecting inertial terms, Equation 3 becomes,

−∂L
∂r

= ζg
1

2 ṙ. (5)

Rewritten in terms of the force components resolved in the local Serret-Frenet Frame, {W,U,V},

ζ ṙ = −g− 1

2

δE

δr
= Wt̂+ Un̂+ V b̂, (6)

where the Lagrangian reduces to -E, where E is the elastic bending energy.

6 Evolution of g, κ, τ , and the Serret-Frenet Frame

The evolution of g, κ, and τ can be determined in terms of {W,U,V}, the resolved force com-

ponents. If one has g, κ, and τ , the curve can be completely reconstructed up to a translation

and/or rotation. Therefore, by evolving these quantities, we will establish the evolution of the

space curve.

6.1 Determination of ġ and ˙̂t

To get ġ, differentiate the equation of motion, Equation 6, with respect to α and use the

Serret-Frenet relations to get,

ζ
∂ṙ

∂α
= (Wα − κU) t̂ + (Uα − τV + κW ) n̂ + (Vα + τU) b̂. (7)

Using compatibility of temporal and spatial derivatives, Equation 7 can be rewritten as,

ζ∂t

(

g
1

2 t̂
)

= (Wα − κU) t̂ + (Uα − τV + κW ) n̂ + (Vα + τU) b̂. (8)

The evolution of the metric can be taken as the magnitude of the tangential component,

ζġ = 2g
1

2 (Wα − κU) . (9)
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The remaining components - namely, the normal and binormal - define the evolution of the

tangent vector.

ζ ˙̂
t = g−

1

2 (Uα − τV + κW ) n̂ + g−
1

2 (Vα + τU) b̂. (10)

6.2 Determination of κ̇ and ˙̂n

To get κ̇, first differentiate Equation 10, with respect to α and use the Serret-Frenet relations

to get,

ζ∂α
˙̂
t = −1

2
gαg

−
3

2

[

(Uα +Wκ− τV ) n̂ + (Vα + τU) b̂
]

+ g−
1

2 [(Uαα + κWα + καW − τVα − ταV ) n̂

+ (Vαα + τUα + ταU) b̂ + (Uα + κW − τV )
(

−κt̂ + τ b̂
)

− (Vα + τU) (τ n̂)
]

.(11)

It is also known that,

ζ∂α
˙̂
t = ζ∂t(κn̂) = ζ(κ̇n̂ + κ ˙̂n). (12)

Equating the normal components will give us κ̇.

ζκ̇ = −1

2
gαg

−
3

2 (Uα +Wκ− τV ) + g−
1

2

(

Uαα + κWα + καW − 2τVα − ταV − τ 2U
)

. (13)

The remaining components constitute the evolution of the normal vector.

ζ ˙̂n =
1

κ

[

−1

2
gαg

−
3

2 (Vα + τU) + g−
1

2

(

Vαα + 2τUα + ταU + τκW − τ 2V
)

]

b̂− g−
1

2 (Uα + κW − τV ) t̂.

(14)

6.3 Determination of τ̇ and
˙̂
b

To get an equation for τ̇ , one can use a similar approach. Start with equation Equation 14:

ζ ˙̂n =
1

κ

[

−1

2
gαg

−
3

2 (Vα + τU) + g−
1

2

(

Vαα + 2τUα + ταU + τκW − τ 2V
)

]

b̂− g−
1

2 (Uα + κW − τV ) t̂.

(15)

Stepping back, we also have the following equation,

ζ
(

∂α
˙̂n
)

= ζ (∂t(n̂α)) = ζ

(

−κ̇t̂ − κ ˙̂
t + τ̇ b̂ + τ

˙̂
b

)

. (16)

One can determine τ̇ by equating the binormal components of the right hand side of Equation

16, including the contribution from ˙̂t, and the derivative with respect to α of Equation 15. The
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result is,

ζτ̇ = ∂α

[

1

κ

[

−1

2
gαg

−
3

2 (Vα + τU) + g−
1

2

(

Vαα + 2τUα + ταU + τκW − τ 2V
)

]]

+ g−
1

2 (κVα + κτU) .

(17)

Following the same procedure, the evolution for ˙̂
b is,

ζ
˙̂
b = −g− 1

2 (τU + Vα) t̂ +
1

κ

[

1

2
gαg

−
3

2 (Vα + τU) − g−
1

2

(

Vαα + 2τUα + ταU + τκW − τ 2V
)

]

n̂.

(18)

The above evolution equations were determined using only Serret-Frenet behavior and are

otherwise completely general. One simply needs to determine the forces on the curve, {W,U,V},
in order to determine the evolution of the metric, curvature, and torsion, and the Serret-Frenet

frame, if it is desired. As discussed in the introduction of this section, the motion of a space

curve is determined up to rotations and translations by knowing how g, κ , and τ evolve. What

is left to be determined are {W,U,V}, which is addressed in the next section.

7 Force Determination

7.1 Calculus of Variations

Our space curve is parameterized with respect to a general variable α. Using metric notation,

one can define,
d

ds
=

1√
g

d

dα
, g

1

2 = |rα|, (19)

where the total contour length is,

S =
∫ αmax

αmin

g
1

2 dα. (20)

The action, I, is defined as the path integral of the Lagrangian between two fixed end points.

Written in integral form for a generic Lagrangian,

I =
∫ αmax

αmin

L(α, r, rα, rαα, rααα)g
1

2 dα, (21)

where the subscripts, {α,αα ,ααα}, signify differentiation with respect to α.

Using the principle of least action, one can derive the higher-order Euler equation needed to

minimize the action with respect to some change in r(α). The result, derived in the appendix
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below, Appendix A, is the following:

∂L̂

∂r
− d

dα

(

∂L̂

∂rα

)

+
d2

dα2

(

∂L̂

∂rαα

)

− d3

dα3

(

∂L̂

∂rααα

)

=
δE

δr
, (22)

where L̂ = L(α, r, rα, rαα, rααα)g
1

2 . This is a general conclusion which can be applied to any

third-order Lagrangian written in terms of α. The next section uses this result to analyze the

behavior of our specific system.

It is important to note that one can use Equation 22 only in combination with a set of

boundary conditions determined while minimizing the action. This is also derived and discussed

in the appendix.

7.2 Curve-dependent force equations in 2D

Although correct and complete, applying Equation 22 to a given Lagrangian is tedious and the

calculations are prone to error. To facilitate this step for a Lagrangian with a curve-dependent

energetic term, such as elastic energy, one can rewrite this equation in terms of κ and τ instead

of α, r, rα, rαα rααα by using the chain rule, given,

κ =
|rα × rαα|
(rα · rα)

1

2

, (23)

τ =
rα × rαα · rααα

|rα × rαα|2
. (24)

Let us first restrict ourselves to two dimensions, so that the Lagrangian has dependence

only on κ and g. Equation 22 rewritten using the chain rule for the two-dimensional case is,

−g− 1

2

δEe

δr
= −g− 1

2





∂
(

L(κ, g) g
1

2

)

∂r
− d

dα





∂
(

L(κ, g) g
1

2

)

∂rα



+
d2

dα2





∂
(

L(κ, g) g
1

2

)

∂rαα







 ,

(25)

−g− 1

2

δEe

δr
= −g− 1

2

[

− d

dα

(

g
1

2

∂L(κ, g)

∂κ

∂κ

∂rα

+ 2g
∂L(κ, g)

∂g
t̂ + L(κ, g) t̂

)

+
d2

dα2

(

g
1

2

∂L(κ, g)

∂κ

∂κ

rαα

)]

,

(26)

where the subscript {e} refers to the elastic energy term.
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We have assumed here that there is no spatial dependence. Using Equation 26, one also

needs the following:

∂κ

∂rα

= −κg− 1

2 t̂ − 1

2
g−

3

2 gαn̂, (27)

∂κ

∂rαα

= g−
1

2 n̂. (28)

These relationships were derived by using Equations 23 and ploughing through the differenti-

ation. By inserting them directly into Equation 26, we have derived general equations for the

force components in 2D. The tangential and normal components are the following:

Wo = a

[

1

2
g−

3

2 gακ
∂L

∂κ
+ 2g−

1

2 gα

∂L

∂g
+ g−

1

2 κ
d

dα

(

∂L

∂κ

)

+ 2g
1

2

d

dα

(

∂L

∂g

)

+ g−
1

2

∂L

∂α

]

, (29)

Uo = a

[

1

2
g−

5

2 g2
ακ
∂L

∂κ
− 1

2
gαα∂κL− 1

2
g−

3

2 gα

d

dα

(

∂L

∂κ

)

− g−
1

2

d2

d2α

(

∂L

∂κ

)

+ 2g
1

2 κ

(

∂L

∂g

)

+ g−
1

2 κL

]

.

(30)

These will be used in case studies to follow.

7.2.1 Case study: 2D Elastic force, Interfacial growth model

Using the above definitions, geometric relations, and Equation 29 and 30, we now have the

means to derive the elastic energy contribution to the equation of motion of an extensible,

elastic curve. The curve in this case could represent an interface that expands due to forces

dependent upon local curvature.

V, the elastic bending energy term of the Lagrangian (L = T − V − C) becomes,

L = −V (α) = −1

2
a
κ2

g
, (31)

where a is the elastic flexure. For our purposes, the flexure is constant along the length of the

space curve. The normal component of the force due to the elastic energy is therefore,

Ue = a

[

−g− 7

2 g2
ακ+

3

2
g−

5

2 gακα +
1

2
g−

5

2 gαακ− g−
3

2 καα − 1

2
g−

3

2 κ3
]

, (32)

We = 0, (33)

where the subscript {e} refers to the elastic force. When the curve is evolving solely under

the influence of elastic energy, the unconstrained evolution equations for both κ and g are
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determined now that Ue and We are known.

ζġ = −2g
1

2 κUe (34)

ζκ̇ = −1

2
gαg

−
3

2 ∂αUe + g−
1

2 ∂ααUe (35)

For intuition, let us consider the example of a circle. The curvature is equal to κ̃ = 1/R,

where R is the radius. In terms of α, the angular coordinate here, κ = 1 and g
1

2 = R. The

derivatives κα, καα, gα, etc., are equal to zero for this cylindrically symmetric case. Therefore

the force components and the resulting evolution equation are the following:

Ue = −a
2
g−

3

2 κ3 = − a

2R3
,

We = 0,

ζġ = −2g
1

2 κUe =
a

R2
,

ζκ̇ = g−
1

2 ∂αα(Ue) = 0. (36)

The space curve in the shape of a circle, evolving under the influence of its own curvature is

therefore expanding at a rate determined by ġ. This is the behavior one would expect, since

by doing so, the curve is reducing its elastic energy.

7.2.2 Case study: 2D Elastic and random forces, Tumor growth model

Tumors have been found to follow Mullins-Herring growth (MH) [40, 41]. MH is a part of a

universality class, which describes the dynamics of an elastic interface in a 2D environment of

noise. The elastic interface in this case is the curve that defines the edge of the tumor, and the

noise represents the collective effect of various biological processes.

The framework developed thus far can in principle accommodate the addition of random

forces to treat this particular case [42]. The forces due to interfacial elasticity are given by

Equation 32 and 33. Added to that is the random force, with which the resulting equation

reads,

ζ ṙ dt =
(

W t̂ + U n̂ + V b̂
)

dt = (Wo dt+ σtdBt) t̂ + (Uo dt+ σndBn) n̂ + (V o dt+ σbdBb) b̂,

(37)
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where B represents a stocastic, random variable (Weiner) and σ represents the standard devi-

ation of the noise. The equation for the metric is,

ζġ dt = −2g
1

2 κU dt = −2g
1

2 κ (Ue dt+ σndBn) . (38)

We are currently investigating this application [42].

7.3 Curve-dependent force equations in 3D

The three dimensional case is naturally much more cumbersome. Starting from Equation 22

again and rewriting for a Lagrangian in 3D, L(τ ,κ,g),

−g− 1

2

δEe

δr
= −g− 1

2

[

− d

dα

(

g
1

2

(

∂L

∂κ

∂κ

∂rα

+
∂L

∂τ

∂τ

∂rα

)

+

(

2g
∂L

∂g
+ L

)

t̂

)

+

d2

dα2

(

g
1

2

(

∂L

∂κ

∂κ

rαα

+
∂L

∂τ

∂τ

rαα

))

− d3

dα3

(

g
1

2

∂L

∂τ

∂τ

rααα

) ]

. (39)

The remaining definitions that one needs are,

∂τ

∂rα

= τ

(

1 − 2g
1

2 − g2
α

2gκ2

(

g
1

2 +
1

2

)

)

t̂ +
τgα

2gκ
n̂ +

1

2

(

καgα

gκ2
− gαα

gκ
+ 2κ+

3g2
α

2g2κ

)

b̂,(40)

∂τ

∂rαα

=
τgα

2g
1

2κ2
t̂ + τ





1 − g
1

2

κ



 n̂ +

(

− gα

gκ
− κα

κ2

)

b̂, (41)

∂τ

∂rααα

=
1

κ
t̂. (42)

Now the resultant force components in terms of a general Lagrangian in three dimensions

can be determined. The complexity of the resulting equations encourages one to reevaluate

their usefulness, and for this reason they are excluded.

8 Length Constraint

In this report we set out to model polymers using space curve dynamics. Our curves thus far are

lacking one important property that is imperative for our intended application: constant length.

Although stretchable to some extent, the carbon-carbon and other bonds forming the backbone

of polymer chains are effectively rigid, resulting in both global and local inextensibility. One can

incorporate a Lagrange multiplier to provide a fictitious force acting to maintain a conserved

geometric quantity such as length.
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8.1 Updated equation of motion

Adding a term to our Lagrangian from above, Equation 31, we have (L = T - V - C),

L = −V − C = −1

2
a
κ2

g
− λ, (43)

where λ(α) is the fictitious force imposing the length constraint. Minimizing the action, but

leaving the elastic forces in general terms, we get the following equations, where Uo and Wo are

the force components from all other forces.

U = Uo − g−
1

2 κλ (44)

W = Wo − g−
1

2 λα (45)

Local inextensibility requires that ∂t (̂t · t̂) = 0, requiring that t̂ remains normalized and

that the metric does not evolve. Applying this to Equation 6 and using the Serret-Frenet

relations, we conclude that

∂αW = κU. (46)

This is the condition which needs to be satisfied in order for our space curve to maintain

constant length. Plugging in Equation 44 and Equation 45 into this equation, we arrive at a

partial differential equation which can be solved numerically for lambda, our fictitious forces.

g−
1

2 λαα − 1

2
g−

3

2 gαλα − κ2g−
1

2 λ = ∂αWo − κUo. (47)

8.2 Case study: 2D Elastic dynamics

For the specific case of a two-dimensional curve of constant length evolving under its own

curvature, one can now determine the evolution equation for kappa. The general equation from

above is,

ζ∂tκ = −1

2
gαg

−
3

2 (Uα + κW ) + g−
1

2 (Uαα + κWα + καW ). (48)

After substituting for Wα using Equation 46, it can then be rewritten as,

ζ∂tκ = −1

2
gαg

−
3

2 (Uα + κW ) + g−
1

2 (Uαα + κ2U + καW ). (49)

The metric evolution equation is,
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ζġ = 2g
1

2 (Wα − κU) = 0. (50)

In the case of unconstrained motion, two evolution equations were needed, one for the metric

and one for κ. Because here length is being conserved, the number of evolution equations should

be reduced by the number of conserved quantities, as we observe above. For simplicity, we can

work in terms of contour length and evolve κ̃, the real curvature. The evolution equation and

normal and tangential elastic forces are then

ζ∂tκ̃ = U ′′ + κ̃2U + κ̃′W, (51)

Ue = a

(

κ′′ +
1

2
κ3
)

, (52)

We = 0. (53)

9 Extension to 3D: Hasimoto Transformation

Thus far we have only looked at case studies of curves in two dimensions. In the three-

dimensional case, one would need to evolve the curvature, torsion, and metric according to

the equations derived in Section 2 above, rewritten here:

ζκ̇ = −1

2
gαg

−
3

2 (Uα +Wκ− τV ) + g−
1

2

(

Uαα + κWα + καW − 2τVα − ταV + τ 2U
)

, (54)

ζτ̇ = ∂α

[

1

κ

[

−1

2
gαg

−
3

2 (Vα + τU) + g−
1

2

(

Vαα + 2τUα + ταU + τκW − τ 2V
)

]]

+ g−
1

2 (κVα + κτU) ,

(55)

ζġ = 2g
1

2 (Wα − κU) . (56)

The equation for torsion is extremely complicated, not to mention singular at points where

the curvature is equal to zero. We can simplify the three-dimensional dynamics by recasting the

formalism using complex variables and rederiving the evolution equations. By implementing

the so-called Hasimoto transformation, the time evolution is reduced to solving two evolution

equations: one for the newly-defined complex curvature and one for the metric.
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9.1 General formulation

Following from Hasimoto’s seminal paper [43], we first write,

∂α

(

n̂ + i b̂
)

= −iτ
(

n̂ + i b̂
)

− κt̂, (57)

which prompts the definition of new variables N, ψ, and φ.

N =
(

n̂ + i b̂
)

eiφ (58)

ψ = κ eiφ (59)

φ =
∫ αmax

αmin

τ g
1

2 dα (60)

The new variable ψ can be thought of as a complex curvature, and φ can be viewed as either

an integrating factor or a phase angle associated with the new complex basis vector N. Using

the Serret-Frenet relations and the new variables, we can rewrite the complex Serret-Frenet

relations as,

∂αN = −ψt̂, (61)

and

∂αt̂ = Re
[

ψN̄
]

=
1

2

(

ψ̄N + ψN̄
)

, (62)

where the bar signifies complex conjugation. The orthogonality relations between t̂, N, and N̄

are,

t̂ · t̂ = 1 N · N̄ = 2 N · N = 0 N · t̂ = 0, etc. (63)

The goal is to determine an evolution equation for the new complex curvature, ψ, as we did

for κ and τ above. Recalling the procedure to do so, we need to assume the compatibility of

partial derivatives and match each basis component.

9.1.1 Determination of ġ and ˙̂t

Let us first define the resolved force components, as we did in Equation 6 above.

ζ ṙ = Y t̂ + Z̄N + ZN̄ (64)

The coefficients {Y,Z} exist in the complex set. They are related to {W,U,V} by the following

equations,

Y = W, (65)
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Z =
1

2
(U + iV ) eiφ. (66)

The evolution of the metric and the tangent vector can be determined by differentiation:

∂α(ζ ṙ) = ζ∂t(g
1

2 t̂) =
(

Yα − ψZ̄ − ψ̄Z
)

t̂ +
(

1

2
ψ̄Y + Z̄α

)

N +
(

1

2
ψY + Zα

)

N̄, (67)

leading to,

ζġ = 2g
1

2

(

Yα − ψZ̄ − ψ̄Z
)

, (68)

ζ ˙̂t = g−
1

2

[(

1

2
ψ̄Y + Z̄α

)

N +
(

1

2
ψY + Zα

)

N̄

]

. (69)

9.1.2 Determination of Ṅ and ψ̇

The evolution of N can be written as,

ζṄ = αN + βN̄ + γt̂. (70)

Using the orthogonality conditions (Equation 63), ˙̂t (Equation 69), and the above (Equation

70), the coefficients α, β, and γ are determined.

ζ∂t(N̄ · N) = 0, (ζ ˙̄N) · N + N̄ · (ζṄ) = 2ᾱ+ 2α, α = iR (71)

ζ∂t(N̄ · N̄) = 0, (ζ ˙̄N) · N̄ + N̄ · (ζ ˙̄N) = 2β̄ + 2β̄, β = 0 (72)

ζ∂t(N · t̂) = 0, (ζṄ) · t̂+N · (ζ ˙̂t) = γ+2g−
1

2 (
1

2
ψY +Zα), γ = −g− 1

2 (ψY + 2Zα) (73)

ζṄ = iRN − g−
1

2 (ψY + 2Zα) t̂ (74)

R is a real number. One can now compare the components of the temporal derivative of

Equation 61 and the derivative with respect to α of Equation 74.

ζ∂αṄ = −
(

iRψ + g−
1

2 (∂α (ψY ) + 2Zαα) − 1

2
g−

3

2 gα (ψY + 2Zα)
)

t̂ +
(

iRα − 1

2
g−

1

2 ψ̄ (ψY + 2Zα)
)

N − 1

2
g−

1

2ψ (ψY + 2Zα) N̄ (75)

ζ∂tNα = −
(

ζψ̇t̂ + ψ(ζ ˙̂t)
)

= −ζψ̇t̂ − ψ g−
1

2

[(

1

2
ψ̄Y + Z̄α

)

N −
(

1

2
ψY + Zα

)

N̄

]

(76)
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Matching the t̂ components, we get,

ζψ̇ = iRψ + g−
1

2 (∂α (ψY ) + 2Zαα) − 1

2
g−

3

2 gα (ψY + 2Zα) . (77)

The N components yield,

Rα = −ig−
1

2

(

ψ̄Zα − ψZ̄α

)

= 2Im
[

ψ̄Zα

]

. (78)

We can integrate Equation 78 to find R, in the process defining a time-dependent integrating

factor A(t).

R = 2
(∫ α

g
1

2 Im
[

ψ̄Zα

]

dα+ A(t)
)

= 2
(

Im
[

Zψ̄
]

−
∫ α

g
1

2 Im
[

Zψ̄α

]

dα+ A(t)
)

(79)

The evolution equation is now,

ζψ̇ = 2iψ
(

Im
[

Zψ̄
]

−
∫ α

g
1

2 Im
[

Zψ̄α

]

dα+ A(t)
)

+g−
1

2 (∂α (ψY ) + 2Zαα)−1

2
g−

3

2 gα (ψY + 2Zα) .

(80)

The integrating factor, A(t), can be eliminated by a redefinition of variables.

Ψ = ψe−2i
∫ t

0
A(t) dt. (81)

A(t) represents a shift in the origin of the phase of N. A(t) will be set equal to zero from here

onward without loss of generality. Our final result is,

ζψ̇ = 2iψ
(

Im
[

Zψ̄
]

−
∫ α

g
1

2 Im
[

Zψ̄α

]

dα

)

+ g−
1

2 (∂α (ψY ) + 2Zαα) − 1

2
g−

3

2 gα (ψY + 2Zα) .

(82)

Our results are completely general and can accommodate growth through a changing metric.

9.2 Length constraint

If one wishes to model a polymer chain, the geometric constraint of inextensibility can be

incorporated, as it was above, by requiring ζġ to be zero. We can rewrite our equations in

terms of contour length, s, the spatial derivatives as {′,′′}, and the real curvature (κ̃) and

torsion (τ̃). The initial definitions become:

N =
(

n̂ + i b̂
)

eiφ (83)
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ψ = κ̃ eiφ (84)

φ =
∫ s

0
τ̃ ds (85)

N′ = −ψt̂ (86)

t̂′ = Re
[

ψN̄
]

=
1

2

(

ψ̄N + ψN̄
)

(87)

The inextensibility requirement is:

Y ′ = ψZ̄ + ψ̄Z = 2Re
[

ψZ̄
]

. (88)

In terms of the real force components, we recover the familiar result,

W ′ = κ̃U. (89)

The integrating factor, R, becomes:

R = 2
(

Im
[

Zψ̄
]

−
∫ s

Im
[

Zψ̄′

]

)

. (90)

The resultant evolution equations are:

ζ ˙̂t =
(

1

2
ψ̄Y + Z̄ ′

)

N +
(

1

2
ψY + Z ′

)

N̄, (91)

ζṄ = iRN − (2Z ′ + ψY ) t̂, (92)

ζψ̇ = 2iψ
(

Im
[

Zψ̄
]

−
∫ s

Im
[

Zψ̄′

]

)

+ 2Z ′′ + (ψY )′ . (93)

9.2.1 Case study: 3D Elastic dynamics

The result, Equation 93, differs from the result published by Goldstein and Langer for the

Lagrangian, L = −a
2
κ̃2 − λ, corresponding to elastic dynamics [36]. Their result, using the

definition Γ = 2Z and the real components of force, {W,U,V}, is,

ζψ̇ =
(

∂ss + |ψ|2
)

Γ + ψ

∫ s

ds′ Im
[

ψ′Γ̄
]

+ ψ′W. (94)

Ours, rewritten with equivalent definitions and format, is,

ζψ̇ =
(

∂ss + |ψ|2
)

Γ + iψ
∫ s

ds′ Im
[

ψ′Γ̄
]

+ ψ′W. (95)

The discrepancy that has not yet been reconciled is an i in the second term. I am going to

write this off as a typo, given that our result does agree with [44]
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10 Numerical Implementation

10.1 Algorithm

One can use the following algorithm to implement 3D dissipative curve dynamics utilizing the

Hasimoto transformation.

1. Take a discrete set of points that represent the curve, equally spaced in terms of contour

length, s, and determine κ(s) and τ(s). This is the initial configuration.

2. From this initial configuration:

a. Integrate τ to determine φ, according to Equation 60.

b. Construct ψ from Equation 59.

3. Once ψ has been constructed, begin the iterative loop.

a. Calculate ψ′, ψ′′, ψ′′′′.

b. Determine κ and κ′′ from the above, from which λ and λ′ can be calculated.

c. Calculate Γ.

d. Calculate the right-hand side of Equation 82.

e. Integrate ψ a single time step using Euler integration, and continue from 3.a above.

10.2 Preliminary results

Issues arise when taking high order derivatives, namely in the calculation of ψ′′′′. Standard

finite difference schemes are notoriously numerically unstable for most choices of timesteps.

Psuedospectral methods can allieviate these difficults by dealing with the derivatives of the

linear parts in Fourier space [45].

A code has been developed which implements the algorithm above for the case of 3D elastic

dynamics. Preliminary results are shown in the images located at the end of the report. Figure

1 shows the relaxation of a closed, bent curve into the lowest energy configuration of a circle.

Figure 2 and Figure 3 are plots of the real and imaginary components of the complex curvature

ψ, and Figure 4 is the real curvature, κ̃. For this simple case study the results are as one would

predict.

One difficulty quickly becomes evident while working in terms of a body coordinate for

examples of closed curves. In real space representations, the errors in the calculated trajectories
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of atoms and molecules collectively diverge from the true evolution over a period of time. We

would expect the same for our variable, ψ, after multiple time steps. The reconstructed curve

at the end of the simulation does not then close, however, as we could not reasonably expect

the error in the curvature and the torsion that accumulates to cancel out. This problem can be

dealt with by implementing a periodic adjustment to the values of ψ. I am currently developing

a (hopefully) clever scheme to do so. Once we have attained greater confidence in the real-space

representation, a simple Lennard-Jones interaction can easily be added.

11 Discrete Counterpart

A discretized counterpart to the continuous curve dynamics is concurrently being considered

which could serve either as a benchmark for or an alternative to the continuous case. In this

model, the continuously curved wire is replaced with a sequence of straight segments of length

l. The straight segments are connected at the ends, forming nodes. The mass of the wire is

understood to be concentrated at the nodes, where the localized mass is then given by m = ρ

l. The constant ρ is the mass density of the wire. The elastic bending energy integral of the

continuous wire is now replaced by a discrete sum. The variable θi is the angular deviation

from a straight line of adjacent segments meeting at the i’th node. The nodes, in addition

to being the location of the concentrated mass, are also where the Lennard-Jones interactions

between segments of the filament are assumed to be concentrated. The discrete model replaces

the continuous one in this way.

A functional code has already been developed. Rattle, an algorithm used to integrate

equations of motion with internal constraints, is used to evolve the polymer in time [46]. A

simple bending energy has been used to calculate the force on the curve,

Eelastic =
a l

2

∑

θ2
i . (96)

The elastic force is simply the gradient of Equation 96. In order to simulate a solution or melt

environment, temperature is maintained through the addition of a Langevin force term. A

Lennard-Jones interaction is also incorporated into the force calculation. Inertial forces can

be present or damped. Together these encapsulate the environment and conservative forces

experienced by Kratky worm-like chain.
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For the case of just elastic bending energy in a dissipative regime, analogous to that of the

results shown for the continuous example, the preliminary results look very promising. The

relaxation of the curvature is shown in Figure 5. The shape relaxation is qualitatively equivalent

to Figure 1.

12 Beyond the Serret-Frenet Relations

The entire work presented here has been developed within the framework of the Serret-Frenet

relations. Naturally, there are limitations one must consider. We have taken a space curve,

overlain it with an elastic filament, and declared that the motion of this space curve represents

the dynamics of the physical object; however, the filament has some finite cross section which

we are neglecting. In the present formulation, the minimum energy configuration of a filament

with an elliptical cross-section, for instance, is a configuration where the backbone follows a

straight line. This configuration is irrespective of cross-sectional orientation, so a flat filament

or one twisted about its backbone has the same energy.

As discussed in 4.1, κ and τ can be determined completely by information about the underly-

ing space curve, and include no information about object orientation. The matrix representation

in terms of contour length, s, is

∂

∂s















t̂

n̂

b̂















=















0 κ̃ 0

−κ̃ 0 τ̃

0 −τ̃ 0





























t̂

n̂

b̂















. (97)

It is possible to develop a framework that takes into account the object orientation with respect

to the underlying space curve. To do so, the third component of the skew-symmetric matrix

must be non-zero. In terms of a defined orthonormal frame,

∂

∂s















ê1

ê2

ê3















=















0 σ3 −σ2

−σ3 0 σ1

σ2 −σ1 0





























ê1

ê2

ê3















. (98)

The first unit vector, ê1, is defined equivalently to t̂. Whereas before the second unit vector

was represented by n̂ and pointed in the direction of the second derivative, here problems arise
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because n̂ is not well defined in areas where the curvature is equal to zero. The basis vector ê2

can instead indicate the material orientation, such as the normal to the flat side of a ribbon-like

filament. The third vector, ê3, is then the cross product of the preceding two.

The new matrix component σ2 is often described as the “twist density”, because of its role

as effectively keeping track of how much the object is twisted about its backbone. Just as we

have associated an energy to κ and τ above, we can now associate an energy to the values of

σ1, σ2, and σ3. The elastic energy up to quadratic order of an isotropic elastic filament is then,

Eelastic =
a

2

∫

(

σ2
1 + σ2

3

)

ds +
b

2

∫

σ2
2 ds, (99)

where the new constant b is the elastic constant associated with twisting [37].

The twist component, σ2, has been excluded in this study for a few reasons. First, because of

computational efficiency. Naturally, the inclusion of this additional energetic component incurs

additional computational expense, and every calculation in an iterative procedure counts if one

is hoping to model a large system of many polymer chains over extremely long timescales. It

is no good, however, to have a very efficient code that is not accurately modeling the system

you are attempting to study. The second reason the twist component has been excluded is

because in this simple model we are assuming that the flexure, a, is much greater than the

twist constant, b. The resultant forces from twist could therefore neglected. Whether this is a

reasonable approximation has yet to be determined.

13 Present Conclusions and Future Plans

We have outlined the theoretical developments of curve dynamics for a computationally tractable

model that treats polymer molecules as elastic filaments. Both continuous and discrete cases

were considered. These results form the foundation for two primary objectives.

For our first objective, we must include a simple Lennard-Jones potential to represent

interactions and a Langevin term to simulate a heat-bath. With interactions and temperature

defined, we will be able to calculate a “stability diagram”, similar to a phase diagram, which

could be used to investigate the development of order through crystallization. For instance, at

a high enough temperature, one would expect the interaction forces to be negligible compared

to the stocastic forces, and the polymer would be amorphous. Upon cooling, it can minimize
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its potential energy by crystallizing into possibly a helix or folded-chain structure. The degree

of order can be quantified by the average radial distribution function of a polymer segment. A

higher flexure corresponds to a higher persistence length, which could prohibit the formation

of folds. The applications are most relevant to biological processes, not necessarily mechanical

properties, but we see this as a feasible intermediate step in our investigations.

The remaining, primary goal is to model the elastic and plastic deformation of a real polymer

system. Our intent is to study an entangled, linear chained polymers and also eventually a

system which is cross-linked. Bulk properties will be confirmed, but a particular focus will be

placed on investigating interfacial behavior, as discussed in the introduction.

For the first part of the project, we will follow a dual approach, using both the continuous

curve dynamics and the discrete analog. We expect the discrete version to be more com-

putationally viable and therefore more appropriate for the long simulations studying plastic

deformation, part two of the project.

A Higher Order Euler Equation

The action, I, is defined as the path integral of the Lagrangian between two fixed end points.

Written in integral form for a generic Lagrangian, L,

I =
∫ uf

ui

L(u, r, r′, r′′)du, (100)

where the single and double quotes, {′,′′}, signify differentiation with respect to u, to first and

second order respectively.

It is worthwhile to note that the action is typically defined as an integral over space and time.

However, I have excluded the time dependence here for purposes of clarity, knowing beforehand

that the Lagrangian considered below has no ṙ dependence and will therefore produce no

additional terms in our result.

The equation of motion of the chain is obtained by using the principle of least action. We

rewrite the action in terms of the correct r(u) plus some perturbation, ǫΘ(u), and require the

variation with respect to ǫ be zero at ǫ = 0. This will allow us to find the configuration of
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lowest energy. The new coordinates are,

R = r + ǫΘ(u), (101)

R′ = r′ + ǫΘ′(u), (102)

R′′ = r′′ + ǫΘ′′(u). (103)

Here we have introduced a function Θ(u). This function has a continuous second derivative

and is zero at the endpoints, which physically means that the endpoints are fixed. No other

constraints have been imposed at this time, leaving Θ otherwise arbitrary. The action can now

be redefined in terms of Equations 101-103.

I =
∫ uf

ui

L(u,R,R′,R′′, ǫ,Θ)du (104)

Differentiating the action beneath the integral sign with respect to ǫ we get

dI

dǫ
=
∫ uf

ui

d

dǫ
L(u,R,R′,R′′, ǫ,Θ)du. (105)

Using the chain rule, the expanded integrand is

d

dǫ
L(u,R,R′,R′′, ǫ,Θ) =

∂L

∂R

dR

dǫ
+

∂L

∂R′

dR′

dǫ
+

∂L

∂R′′

dR′′

dǫ
, (106)

leading to
dI

dǫ
=
∫ uf

ui

[

∂L

∂R

dR

dǫ
+

∂L

∂R′

dR′

dǫ
+

∂L

∂R′′

dR′′

dǫ

]

du. (107)

Rewritten in terms of Θ,

dI

dǫ
=
∫ uf

ui

[

∂L

∂R
Θ(u) +

∂L

∂R′
Θ′(u) +

∂L

∂R′′
Θ′′(u)

]

du. (108)

Integrating by parts and keeping only terms up to first order in ǫ, the second and third terms

of the integral are, respectively,

∫ uf

ui

∂L

∂R′
Θ′(u)du =

(

∂L

∂R′
Θ(u)

)∣

∣

∣

∣

∣

uf

ui

−
∫ uf

ui

d

du

(

∂L

∂R′

)

Θ(u)du, (109)

∫ uf

ui

∂L

∂R′′
Θ′′(u)du =

[

∂L

∂R′′
Θ′(u) − d

du

(

∂L

∂R′′

)

Θ(u)

]∣

∣

∣

∣

∣

uf

ui

+
∫ uf

ui

d2

d2u

(

∂L

∂R′′

)

Θ(u)du. (110)
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Combining terms we have

dI

dǫ
=

[

∂L

∂R′
Θ(u) +

∂L

∂R′′
Θ′(u) − d

du

(

∂L

∂R′′

)

Θ(u)

]∣

∣

∣

∣

∣

uf

ui

+
∫ uf

ui

[

∂L

∂R
− d

du

(

∂L

∂R′

)

+
d2

d2u

(

∂L

∂R′′

)]

Θ(u)du.

(111)

We want
d

dǫ
I(ǫ) =

(

dI

dǫ

) ∣

∣

∣

∣

∣

ǫ

= 0. (112)

Therefore, evaluating Equation 111 at ǫ = 0, we find

[

∂L

∂r′
Θ(u) +

∂L

∂r′′
Θ′(u) − d

du

(

∂L

∂r′′

)

Θ(u)

]∣

∣

∣

∣

∣

uf

ui

= 0 (113)

and
∫ uf

ui

[

∂L

∂r
− d

du

(

∂L

∂r′

)

+
d2

d2u

(

∂L

∂r′′

)]

Θ(u)du = 0. (114)

The boundary conditions are automatically satisfied for a closed curves, the focus of this

report. Finally, Equation 114 must hold for arbitrary Θ. Therefore, the higher-order Euler

equation is,
∂L

∂r
− d

du

(

∂L

∂r′

)

+
d2

du2

(

∂L

∂r′′

)

= 0. (115)

The final result is a general conclusion which can be applied to any second-order Lagrangian.

One can apply the method used for this derivation to determine an Euler equation for an even

higher order, such as L(u,r,r′,r′′,r′′′). For this case, the equations one must satisfy are,

[(

∂L

∂r′
− d

du

(

∂L

∂r′′

)

+
d2

du2

(

∂L

∂r′′′

))

Θ +

(

∂L

∂r′′
− d

du

(

∂L

∂r′′′

))

Θ′ +
∂L

∂r′′′
Θ′′

]∣

∣

∣

∣

∣

uf

ui

= 0 (116)

and
∂L

∂r
− d

du

(

∂L

∂r′

)

+
d2

du2

(

∂L

∂r′′

)

− d3

du3

(

∂L

∂r′′′

)

= 0. (117)
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Figure 1: Hasimoto dissipative dynamics: Shape relaxation
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Figure 2: Hasimoto dissipative dynamics: Relaxation of the real component of ψ
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Figure 3: Hasimoto dissipative dynamics: Relaxation of the imaginary component of ψ
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Figure 4: Hasimoto dissipative dynamics: Relaxation of the real curvature, κ̃
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Figure 5: Discrete dissipative dynamics: Curvature relaxation
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