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Abstract
We investigate the transfer of energy from a harmonically oscillating atom in
a metal to the electronic subsystem, using a direct simulation method based
on time-dependent tight-binding (TDTB). We present our results in terms of a
viscous damping coefficient β to enable direct comparison with previous MD
and Langevin dynamics simulations, over an ionic energy range relevant for
radiation damage. Analysis of our results using time-dependent perturbation
theory shows that the rate of energy transfer to the electrons is independent of
the frequency of the driven atom at high electronic temperatures, but at low
temperature may vary by an order of magnitude. Our simulations show β also
to be dependent on the electronic temperature, the position of the atom within
the unit cell and even the direction of oscillation. We conclude that a TDTB
simulation can give the electronic damping for an infinite metal over a limited
simulation time window dependent on system size, and show how to monitor
errors in dynamic simulations due to finite-size effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a high energy neutron enters a metal, an initial collision phase produces localized regions
containing self-interstitial atoms (SIAs) and vacancies. This is followed by a rapid period of
recombination of these defects. This is known as a displacement cascade and lasts less than
100 ps for a cascade size of 50 nm [1, 2]. Over the past two decades molecular dynamics (MD)
simulations of the ions have been used to model small cascades. Such simulations determine
the extent of recombination and hence the final population of point defects. The final defect
population, in turn, is the starting point for kinetic Monte Carlo studies of interstitial and
vacancy hopping and recombination, dislocation dynamics and embrittlement [3], and is of
great interest for the modelling of fission and fusion reactor materials.
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The energy of ions involved in a cascade is rapidly partitioned to neighbouring ions
by sequences of collisions. Energy is also transferred from the energetic ions to the cooler
electrons, at a rate dependent on the electron–ion coupling [4]. This coupling increases the rate
of cooling of the ions, and hence a large electronic damping inhibits defect recombination [5].
The rate of cooling due to the electrons is often characterized by the electronic stopping power,
defined as the rate of change of ionic energy with position. Lindhard and Scharff [6] were
the first to derive a model for stopping power at high ion velocity due to the Coulombic
interaction between the ion and the electron gas. Electronic stopping power has also been
computed using a perturbative approach [7] and more generally from a LCAO approach [8].
However with analytic models it is often difficult to go beyond simple examples and so find
quantitatively correct behaviour for complex geometries or general Hamiltonians in a dynamic
simulation.

Energy dissipation to the electrons has been included directly in MD simulations as a
viscous damping force of the form −βVI , where VI is the velocity of ion I and β a suitable
damping coefficient. β is therefore simply related to the stopping power by dE

dx = −β|V|I .
This approach was adopted first by Caro and Victoria [9], who choose a form for β dependent
on the local electronic density. Energy is then returned from the electrons to the ions as white
noise with a Langevin thermostat, whose magnitude is chosen to give the required equilibrium
temperature according to the fluctuation-dissipation theorem. Rather than use a noise term
Finnis et al [5] consider a velocity dependent β in an attempt to include equilibration between
the ions and electrons. The most recent model in this family is due to Duffy et al [10]. They
extend the Langevin dynamics of Caro and Victoria with a dissipative damping term acting on
high energy ions which heats the electronic subsystem. The electronic temperature is evolved
with a heat diffusion equation, the local value of which is used to determine the magnitude of
the stochastic forces.

In this paper we compute the electronic damping using a tight-binding approximation.
We use an orthogonal TB Hamiltonian rather than time-dependent density functional theory
(TDDFT) as tens of thousands of atoms would be needed to simulate a realistic displacement
cascade, and we wish to report effects that would be seen in such a direct simulation method.
The large system size is needed not just to allow room for the collision sequence to take place,
but also to circumvent finite-size effects on the electronic structure of the system. For the
first time we test the notion of a single isotropic viscous damping coefficient β with direct
simulation: we show it is a complicated function of the position and velocity of the ions within
the supercell and the electronic temperature. β may also more generally be a tensor function
and dependent on the history of the evolution of the ionic state via the current state of the
electronic density matrix, but we have not investigated these aspects.

We seek to calculate β in such a manner that it is possible to identify features which are
caused by limitations of the Hamiltonian or finite-size effects, and those which are genuine
deviations from isotropic viscous damping. Any high energy incident ion will perturb the
electronic subsystem with a continuous spectrum of frequencies; typical frequencies of a high
energy ion passing through a metal will be of the order VI /d , where d is the distance of closest
approach between ions. For an energy of 10 keV and d = 0.5 Å (a choice small compared
to a typical interplanar spacing for transition metals) these frequencies are a few PHz—orders
of magnitude above phonon frequencies. We show in section 3 that not all frequencies will be
damped equally. To show this unambiguously our simulations will be of a single ion driven at
frequencies ranging from below the natural frequency up to and beyond the PHz regime.

Our simplified model has the great advantage that we can compare the results to time-
dependent perturbation theory (section 2.1). Comparing our results to first-order perturbation
theory suggests that TDTB is indeed suitable for modelling the electronic damping of ionic
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motion with ionic kinetic energies up to 10 keV. The limitations on the energy range will be
made explicit in section 3.

2. Theory

We seek to relate the perturbation to the electronic subsystem caused by a high energy ion
impact to the electronic transitions which occur. From these transitions we can determine the
energy that is transferred to the electrons and hence the rate at which the ion is damped. To
facilitate analysis we drive at a single frequency a single ion embedded in a supercell. By
fixing the positions of all other atoms, we can focus exclusively on the transfer of energy to the
electronic subsystem.

For this work we are using a simple s-band TB Hamiltonian parameterized for ‘copper’
atoms [11]. The TB Hamiltonian Ĥ(t) is the sum of a time-independent component Ĥ (0) and
a time-dependent contribution Ĥ (1)(t). The time-independent contribution is the Hamiltonian
of the perfect crystal with the vibrating atom removed, i.e. the site of the vibrating atom is
vacant. Ĥ (1)(t) describes the hopping integrals between the vibrating atom and its neighbours.
It also describes the time-dependent electron–electron interactions, which we approximate as
follows:

Eee(t) = 1
2 U

∑

α

(
ρα(t) − ρ(a)

)2
, (2.1)

where ρ(a) is the number of electrons associated with a neutral atom, and is a parameter of the
model [11]. The number of electrons associated with the atom at site α is denoted ρα(t).

U is another parameter of the model and we set it to be equal to 7 V. The hardness
(ionization potential minus electron affinity) of a Cu atom is approximately 6.5 eV; our choice
of U is consistent with this. Although U values of order 10 V are commonly used to describe
the Cu2+ ions in the insulating parent compounds of high-temperature superconductors [12],
the value of U for pure Cu is lower, both because the atoms are not ionized and because of the
metallic screening of the on-site Coulomb interaction.

The choice of U affects the magnitude of the on-site ionic charges during the
oscillation [13], but we note that these charges are only of order 0.1% of an electron and that
the corresponding self-consistent energy is only 10−7 eV per atom. The fluctuation of charges
is not, therefore, a significant mechanism for energy transfer between ionic and electronic
subsystems in our simulations. We have confirmed this by varying U from 0 to 20 V, which
only affects the heating rate by 5%.

The sum in equation (2.1) is taken over all atomic sites. Thus

Ĥ (1)(t) = ĥ(RI (t)) + V̂ee(t), (2.2)

where ĥ(RI (t)) contains the hopping integrals to the vibrating atom, and V̂ee(t) = δEee(t)/δρ̂.
V̂ee(t) in the atomic basis is diagonal with matrix elements U(ρα(t) − ρ(a)).

The electronic contribution to the binding energy is thus

Eel[ρ̂] = Tr(ρ̂ − ρ(a)1̂)Ĥ − Tr ρ̂ V̂ee(t) + Eee(t), (2.3)

where ρ̂ = ρ̂(t), ρ(a)1̂ is a constant diagonal matrix in the atomic basis with all elements equal
to ρ(a), and Ĥ = Ĥ (0)+ Ĥ (1)(t). The subtraction of Tr ρ̂ V̂ee(t) corrects for the presence of this
term in the first term Tr(ρ̂ − ρ(a)1̂)Ĥ , and the addition of Eee(t) includes the electron–electron
interaction energy.
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The evolution of the electronic density operator ρ̂(t) is computed using

˙̂ρ(t) = 1

ih̄
[Ĥ(t), ρ̂(t)]. (2.4)

This equation is integrated using the Runge–Kutta 4th-order algorithm.
If equation (2.3) were evaluated in the Born–Oppenheimer limit we would find Eel[ρ̂ =

ρ̂BO] returns to exactly the same value at the same point in each cycle of oscillation; there
would be no cumulative change of Eel with time. Therefore, we may define the cumulative
energy transferred to the electrons at time t to be

�E(t) = Eel[ρ̂(t)] − Eel[ρ̂BO(t)]
= −

∫ t

0
fI (t

′) · vI (t
′) dt ′ +

∫ t

0
f(BO)

I (t ′) · vI (t
′) dt ′, (2.5)

where fI (t) is the force on atom I due to the interactions of the vibrating atom through Ĥ (1)(t)
using the density matrix ρ̂(t); f(BO)

I (t) is the equivalent force calculated with ρ̂(BO)(t), and vI (t)
is the instantaneous velocity of the vibrating atom.

The force −fI (t) is given by

− fI (t) = ∇I Eel[ρ̂(t)]
=

∑

α �=I

(ρα I + ρIα)[∇I H (1)

α I ]Vee (2.6)

=
∑

α �=I

(ρα I + ρIα)∇I hα I , (2.7)

where [∇I H (1)
α I ]Vee is the gradient of a hopping integral between the vibrating atom and one

of its interacting neighbours, evaluated with a frozen electron–electron potential V̂ee. A full
discussion of electronic forces is given by Todorov [14].

At any given instant the frictional force on the vibrating atom is

FI (t) = fI (t) − f(BO)

I (t), (2.8)

where the second term on the right hand side averages to zero over a complete cycle.
At time t = 0 the density matrix ρ̂ is initialized to ρ̂BO, with the vibrating atom in its

equilibrium position, so that the entire crystal is perfect. In the atomic basis the initial density
matrix has elements

ραβ = (ρBO)αβ =
∑

n

〈α|n〉 fT (εn)〈n|β〉, (2.9)

where

Ĥ |n〉 = εn|n〉, (2.10)

and

Ĥ = Ĥ (0) + Ĥ (1)(t = 0). (2.11)

In equation (2.9) fT (ε) is the Fermi–Dirac distribution for the electronic temperature T and
where the chemical potential has been adjusted so that Tr ρ̂ = Nρ(a), where N is the number
of atoms in the supercell. The Hamiltonian in equation (2.10) is diagonalized with periodic
boundary conditions applied to the supercell, and for a wavevector only at the centre of the
Brillouin zone. Thus, the eigenvalue spectrum {εn} in equation (2.10) is discrete, and this
turns out to be highly significant when we discuss the frequency dependence of the electronic
damping.

4



J. Phys.: Condens. Matter 19 (2007) 436209 D R Mason et al

Multiple k-point sampling for the same size simulation cell does not significantly improve
the estimate of the rate of energy transfer into the electrons. The perturbative analysis to be
discussed below shows that the main errors in the calculated energy transfer rate are caused
by the sparseness of the density of transitions: the limited selection of final states into which
an electron in any given initial state is able to scatter may not be representative of the density
of final states in a real solid. If we were to carry out a multi-k-point simulation with accurate
k-point sampling, we would in effect be studying an infinite periodic lattice of identical copies
of our supercell. Since the Hamiltonian of this infinite system remains periodic, the supercell
Bloch wavevector k remains a good quantum number and electrons in states of any given k are
only able to scatter into states of the same k. Including more k points in the supercell Brillouin
zone therefore fails to increase the number of final states into which any given initial state may
be scattered, and does not significantly improve our estimate of the rate of energy transfer into
the electrons. This is a limitation of the use of periodic boundary conditions to model a non-
periodic solid in which the Bloch momentum k is not conserved. The only effective way to
improve the calculation is to increase the size of the supercell.

The vibrating atom is forced to undergo harmonic oscillations with angular frequency �

and a constant amplitude |A| = 0.1 Å:

RI (t) = R0 + A sin �t . (2.12)

The amplitude of the vibrating atom |A| is chosen large enough to create a significant
perturbation in the electronic subsystem, but small enough that the electronic forces remain
a linear function of the displacement to facilitate analysis with linear response theory.

The power injection into the electron gas is �E(τ )/τ = 2β�〈KI 〉/m I , where we have
assumed the frictional force may be expressed as FI = −β�vI , where β� is a scalar which
varies little over one oscillation. 〈KI 〉 is the average kinetic energy of atom I , and τ is the
period of oscillation. It follows that

β� = 2�E(τ )

|A|2�2τ
. (2.13)

We have thus associated the energy change in our numerical simulations with the equivalent
energy change that would be present in an MD simulation with a frictional force of the form
FI = −β�vI .

2.1. Time-dependent perturbation theory

Choosing the form of the perturbation on the system to be a displacement of a single ion
at a single frequency simplifies the analysis of our results. In the long-time limit for a
continuum system, we can find a simple integral expression for the electronic damping β�

in equation (2.13) using Fermi’s golden rule (FGR).
We have found that our numerical simulation results change little if we do not include the

electron–electron interactions (equation (2.1)). The model is well approximated by splitting the
electronic Hamiltonian into equilibrium and a periodic perturbation part neglecting electron–
electron interactions; Ĥ(t) ∼= (Ĥ (0) + ĥ(t = 0)) + (ĥ(t) − ĥ(t = 0)). As we use small
displacements, we can write the perturbation in terms of a force operator F̂ ,

ĥ(t) − ĥ(t = 0) ∼= (∇I ĥ(t = 0)) · (RI (t) − R0) = −F̂ A sin(�t). (2.14)

First-order perturbation theory gives the energy change of the electronic subsystem as an
integral over the band of the system-dependent and time-dependent terms:

�E(t) =
∫ ∞

−∞
qT (ε)s(ε,�; t) ε dε. (2.15)
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qT (ε) gives the rate at which electronic transitions with energy change ε can occur in a system
initially with a temperature T ,

qT (ε) =
(

A

2h̄

)2 ∑

k

∑

k′ �=k

|Fk′k|2 fT (εk′)(1 − fT (εk′ + ε))δ(ε − εk + εk′). (2.16)

|k〉 denotes the eigenstates of the equilibrium Hamiltonian. Fk′k is the matrix element 〈k′, F̂k〉.
qT (ε) thus contains all the system-dependent information about the rate at which the electrons
may absorb energy.

As the system size increases, the discrete energy levels {ε j} become ever more closely
spaced, and equation (2.16) tends to the integral

lim
N→∞

qT (ε) =
(

A

2h̄

)2 ∫

band
fT (e)(1 − fT (e + ε))|F̃e,e+ε|2 de,

where |F̃e,e+ε|2 = V

8π3

∫

S(e)
d2k

V

8π3

∫

S(e+ε)

d2k′ |〈k′, F̂k〉|2
|vg(k)||vg(k′)| .

(2.17)

S(e) is the isoenergetic surface consisting of all eigenstates with energy e. vg is the group
velocity. V is the volume of the simulation cell.

The second term in the integrand in equation (2.15), s(ε,�; t), samples qT (ε) at time t
given that the driving force is at frequency �,

s(ε,�; t) = t2sinc2

([
ε + h̄�

2h̄

]
t

)
+ t2sinc2

([
ε − h̄�

2h̄

]
t

)

− 2t2 cos(�t) sinc

([
ε + h̄�

2h̄

]
t

)
sinc

([
ε − h̄�

2h̄

]
t

)
. (2.18)

The sinc squared functions in equation (2.18) narrow, such that their widths reduce as 1/t and
the total area under them, t2sinc([ ε±h̄�

2h̄ ]t), increases linearly with time. Therefore for long
times we obtain

lim
large t

s(ε,�; t) = 2h̄π t (δ(ε + h̄�) − δ(ε − h̄�)) . (2.19)

We therefore arrive at the familiar FGR result for large system sizes and long times, which
can be written in the form

�E(t) = A2π�t

2

∫ ∞

−∞

(
fT (ε − 1

2
h̄�) − fT (ε + 1

2
h̄�)

)
|F̃ε− 1

2 h̄�,ε+ 1
2 h̄�|2 dε. (2.20)

The electronic damping (equation (2.13)) measured in our simulations, provided the
assumptions described above are met, should then be

β�,FGR = π

�

∫ ∞

−∞

(
fT (ε − 1

2
h̄�) − fT (ε + 1

2
h̄�)

)
|F̃ε− 1

2 h̄�,ε+ 1
2 h̄�|2dε. (2.21)

β�,FGR will be frequency independent if the integral is proportional to �. It will have an
electronic temperature-dependence given by the difference in Fermi factors fT (ε − 1

2 h̄�) −
fT (ε + 1

2 h̄�), and it will be dependent on the Hamiltonian through F̃ε− 1
2 h̄�,ε+ 1

2 h̄�. We will
explore the limits of equation (2.21) in section 3. In section 4 we explore when the FGR
assumptions are not met when simulating a finite-size system for a finite-time interval.

3. Results

In this section we analyse the dependence of the damping β� on electronic temperature, driving
frequency, the direction of oscillation and the position of the oscillating ion in the unit cell.
When running simulations we were careful to use large enough system sizes to ensure that the
results obtained corresponded to those of an infinitely large metal (see section 4).
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Figure 1. The damping coefficient β computed from simulations at a range of driving frequencies
and electronic temperatures. The T = 10 and 100 K lines coincide. At high temperatures (T >

105 K) the damping is independent of frequency � until h̄� is comparable with the bandwidth.
At low temperatures and low frequencies we see variation in β� due to the inhomogeneity of the
electronic structure. The lines are to guide the eye.

3.1. Damping as a function of driving frequency and temperature

We now explore the dependence of the rate of change of the electronic energy on the frequency
of the ion oscillation and the initial state of the electronic system. We drive the atom about
the equilibrium point R0 = [000], i.e. an ideal lattice site, at a range of frequencies and with
the density matrix initialized at different electronic temperatures. The computational repeat
cell comprises 8 × 7 × 5 fcc unit cells, and the oscillator is driven in the long [100] direction.
Figure 1 shows our results.

We analyse the main features of this graph using the analysis presented in section 2.1 to
highlight when the form of the electron–ion coupling is important. The analysis will focus on
the form of the function |F̃ε− 1

2 h̄�,ε+ 1
2 h̄�|2, which is the only term of (2.21) through which the

choice of tight-binding model enters. A contour plot of |F̃ε− 1
2 h̄�,ε+ 1

2 h̄�|2 is shown in figure 2.

(i) In figure 1 we see a marked decrease of the damping at the highest frequencies, � >

10 rad fs−1. For such high energies the number of available electronic transitions with
such an energy difference begins to drop significantly. This is seen in the low magnitude
of the high � values of the contour plot in figure 2(a). We are therefore unable to transfer
energy efficiently to the electrons in this regime. This is a failure of the simple s-band
tight-binding model we are using—a real metal would allow transitions to higher bands.
However, these frequencies are beyond those which would be generated by a 10 keV ion.

(ii) For electronic temperatures below 10 000 K and frequencies over the range 0.01–1 rad fs−1

we see a variation of over an order of magnitude in the damping with frequency. For
the temperatures considered here the Fermi functions term of (2.21) has the approximate
form of a ‘top hat’ of width h̄� centred on the Fermi energy. Figure 2(b) shows how
|F̃ε− 1

2 h̄�,ε+ 1
2 h̄�|2 varies with ε for a number of different �. The dependence of β� on �

therefore arises from the difference between the area under the different curves over the
intervals (εF − 1

2 h̄�, εF + 1
2 h̄�). The similarity of the curves over a large interval about

the Fermi level suggests that the main contribution to the variation of β� with � is from
the width of the Fermi function top hat. The variation in the number of transitions between
isoenergetic surfaces separated by h̄�, the main contribution to F̃ , is less influential for
this frequency range.
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(a) (b)

Figure 2. Plots of |F̃
ε− 1

2 h̄�,ε+ 1
2 h̄�

|2 (equation (2.17)), which determines how the damping is

influenced by the choice of tight-binding model. The ε axis has been shifted so ε = 0 corresponds
to the Fermi energy. (a) A contour plot of |F̃|2. The contours are linearly distributed. (b) Slices
of the contour plot at given frequencies. At low temperatures the damping at � can be found
by determining the area under the curve in an interval of width h̄� about the Fermi energy (see
section 3.1). This area is shown as a shaded region for A: h̄� = 0.5 eV and B: 3.5 eV. The plots
were created by using time-independent perturbation theory to determine an analytic formula for
E(k) and then collecting this data in 1 eV bins for a system of 25 × 22 × 20 unit cells.

(iii) At high electronic temperatures, T > 104 K, we see very little variation with frequency
until the high energy cut-off described in (i). At high temperature the Fermi function term
of (2.21) simplifies to

fT

(
E − 1

2
h̄�

)
− fT

(
E + 1

2
h̄�

)
≈ h̄�

4kBT
(3.1)

where kB is Boltzmann’s constant. Since this term is energy independent we find that the
electronic damping is given by

β�,FGR = h̄π

4kBT

∫

band
|F̃ε− 1

2 h̄�,ε+ 1
2 h̄�|2 dε. (3.2)

Here the Fermi function term that was so influential in the low temperature case no longer
has an energy dependence. In the high temperature case we integrate over the whole
band for every �. All the electrons can make transitions regardless of the frequency of
perturbation. The damping therefore depends only on how the total number of transitions
with a given energy change varies with this energy difference. From figure 2 this variation
is small until the frequencies referred to in (i). Therefore the variation of β� with � is
small relative to that of the low-temperature regime. We can also see from equation (3.2)
that β� scales with inverse temperature.

3.2. Damping as function of direction and position

Next we consider driving the atom in different directions, and about different positions R0.
Our intention is not to produce a full survey of β as a function of driving direction and atomic
position, only to note the degree to which variation from a single scalar might occur. We
restrict our interest to high symmetry points, plus interpolating midpoints. We use a cube of
7 × 7 × 7 fcc unit cells, driven with fixed oscillator frequency � = 1 rad fs−1 and initial
electronic temperature T = 1000 K. Results are shown in figure 3.
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Figure 3. The damping coefficient β computed for different driving directions for the oscillator
starting from different fractional positions within the fcc unit cell, as indicated along the horizontal
axis. β is isotropic only for small amplitude oscillations about the ideal lattice site. More generally
it is dependent on direction and the position of the atom in the unit cell. The lines are to guide the
eye.

The variation in the damping is seen to be less than one order of magnitude. However β

is isotropic only when the atom is driven about its ideal lattice site: this isotropy is expected
given the cubic symmetry at this point1.

Taken with the results of section 3.1, these results demonstrate the structure that arises in
the damping when we consider an explicit representation of the electron system. Furthermore
the frequency and electronic temperature ranges relevant for radiation damage are those with
the most substantial dependence on electronic structure. We have also found that it is the
behaviour at positions away from the lattice points, something obviously important for MD
simulations, which has the most significant directional dependence.

4. Finite size effects

In section 2.1 we derived a form for β�,FGR at long times (equation (2.21)), assuming that the
spectrum of available transitions qT (ε) was continuous. For any finite-sized system qT (ε) will
be a discrete sum, as in equation (2.16), and so the long-time limit must be approached with
more care. The maximum time over which any damping can be sensibly measured will be
when the width of the sinc squared functions in equation (2.18) become sufficiently small that
the discreteness of qT (ε) is noticeable.

We can get a rough order-estimate for the number of transitions which are sampled at time
t as follows: if h̄� > 2kBT a phonon of energy h̄� may not be emitted by an electronic
transition. The precision of the power transfer calculation will be limited by the density of
available phonon absorbing transitions. Only states within the range max(0, min(2kBT +
h̄�, Eb − h̄�)) can be stimulated, where Eb is the electronic bandwidth. As the width of
sinc2(εt/h̄) is �ε = 4π h̄/t , this gives a number of transitions at time t :

n ≈
(

N

Eb

)2

max(0, min(2kBT + h̄�, Eb − h̄�))
4π h̄

t
, (4.1)

1 At point [ 3
8

1
8 0] the β values for three different driving directions almost coincide. This we believe to be no more

than chance—there is no reason for this due to the crystal symmetry.
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Ω=0.1
Ω=0.5
Ω=1
Ω=5
Ω=10

driving frequency
( rad/fs )

Oscillator periods (Ωt/2π)

ΔE
/Ω

 (
eV

 f
s 

/ r
ad

 )

Figure 4. The energy transfer (defined in equation (2.5)) to the electronic subsystem as a function
of time. The supercell used was 8 × 7 × 5 unit cells, and the ion driven in the [100] direction
about the lattice point. Symbols on the curves indicate where the oscillator passes through the point
RI = R0. If β were perfectly independent of driving frequency these marks would coincide and
would fall on a line of constant gradient. We see that the � = 1 and � = 5 lines diverge from linear
behaviour at later times. � = 0.1 and � = 0.5 do not achieve linearity until after the first period.

where we have assumed that the N electronic eigenstates are distributed evenly over the
bandwidth. If h̄� < 2kBT precision is limited by the smaller range of available phonon
emitting transitions. Then

n ≈
(

N

Eb

)2

(min(2kBT, Eb) − h̄�)
4π h̄

t
. (4.2)

A maximum time for a dynamic simulation would then be given by ensuring n is greater than
some small integer.

Equation (2.18) also gives a minimum time where we might expect the FGR behaviour
to apply: at small t not only must the high moments of qT be small in the sampled region,
but also the cross term in equation (2.18) must be negligible. The latter condition occurs
when the separation between the sinc functions (2h̄�) is large compared to their width, giving
tmin > π/�. The damping experienced immediately after an impulse may be quite different
from the steady-state response.

The system sizes we have used here are adequate to provide a (sometimes short) window
where the continuum long-time damping response can be computed numerically. Repeating
the numerical simulations of section 3 with a larger supercell shows that our results for β have
converged to within 5% of their infinite size limits. The value of β given by the simulation also
agrees with analytic results prepared from linear response theory (equation (2.21)). Figure 4
shows a plot of the energy change as a function of time for different driving frequencies.

10
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Figure 5. Analytic results suggest (equation (2.21)) that we can determine the electronic damping
by considering the function qT (ε) (upper plot) weighted by a sinc function (lower plot). Upper:
from the full density of transitions (dark line) qT (ε) (equation (2.16)) at 1000 K and 105 K
is obtained by imposing Fermi–Dirac occupancies and the electron–ion coupling term. Lower:
s(E,�; t) (equation (2.18)). As time evolves the sinc2 function will narrow and the discrete nature
of the density will become increasingly important. In this illustration |F̃

ε− 1
2 h̄�,ε+ 1

2 h̄�
|2 has been

set to 1 to simplify evaluation. The histogram is computed for 15 × 12 × 10 unit cells with 0.5 eV
bins.

At � < 1 rad fs−1 the minimum time is evident, with a one-period lead in before linear
behaviour sets in. The � > 1 rad fs−1 lines show linearity breaking down after a time limit.
� = 1 rad fs−1 is chosen as it happens to be an anomalous point where the available transitions
are abnormally sparse for this supercell. Note that the energy transfer is not a monotonic
function of time over each oscillation: FI can not be simply written as a constant multiple of
VI . Using a time-independent β is only valid as an average over a number of cycles.

In a full dynamic simulation involving many moving ions it will be very difficult to ensure
that the available transitions are sampled correctly to avoid finite-size effects. For any finite-
sized simulation there will be some frequencies which are incorrectly damped owing to a lack
of available electronic transitions. Our methodology exaggerates this problem by driving at
a single frequency; we believe that such problems are unlikely to be severe for system sizes
N > 1000 in dynamic simulations. Firstly all driving frequencies would be present in such
a simulation, and secondly as the atoms move degeneracies in the electronic states would be
lifted, smoothing the density of states. If desired we could monitor the situation by checking
for undesirable structure in a histogram of qT (ε). Such a histogram is illustrated in figure 5.

5. Conclusion

We have used time-dependent tight-binding simulations to investigate the energy transfer from
an ion executing harmonic motion. The frequencies were chosen to be relevant to the simulation
of radiation damage in metals. In order to compare our results with techniques used in MD we
defined a damping from the energy change given by our simulations.

11
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It is difficult to extract from the literature a single value for the damping coefficient for
a copper ion moving in copper. Ziegler et al [15] offer β = 1.913 × 10−13 kg s−1 =
11.96 eV fs Å−2, which is the value used by the TRIM code. Finnis et al [5] suggest a
limiting case β = 2.49 × 10−14 kg s−1 = 1.55 eV fs Å

−2
. Wang et al [16] calculate

β = 3.81×10−15 kg s−1 = 0.238 eV fs Å
−2

. These results span two orders of magnitude. Our
result (β between 10−15 and 10−14 kg s−1) is within this range, but should not be compared
uncritically. Our computed value is very sensitive to the density of states at the Fermi level,
which is not fitted well by the simple TB model. It is also the damping of a single moving ion
rather than a grossly damaged collision region.

Our results show that at high electronic temperatures the damping due to the electronic
system is frequency independent. However for temperatures below 104 K and angular
frequencies up to 10 rad fs−1 the damping varies depending on the frequency of oscillation.
This parameter regime is that which is encountered in irradiation damage experiments. Our
results also indicate that when considering oscillations about interstitial points directional
dependence is important. The behaviour of particles at interstitial points is an important
factor in displacement cascades. This preliminary work therefore indicates that a complex
tensor damping may be required for an accurate representation of electronic effects in MD.
Nevertheless our results offer support that the inclusion of a scalar damping can give the effect
of electrons to within an order of magnitude.

This additional complexity is naturally included in simulations which use the TDTB
formalism throughout. Analysis from perturbation theory shows that this additional structure
to β stems directly from considering an electronic system with structure. We have seen our
tight-binding model fail when the driving frequency is high and the electrons are no longer able
to absorb energy because there are no available transitions between electronic states. A more
subtle problem occurs when the discreteness in the spectrum of available transitions becomes
important in determining the electron energy change. While this effect can be mostly alleviated
by increasing the system size, specific frequencies may still be affected by this kind of error.
This problem is highlighted by using a single driving frequency—in a real dynamic simulation
many frequencies are present so the impact of a single frequency is lessened.
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