
Chapter 3

Representations of Groups

How can it be that mathematics, being after all a product of human
thought which is independent of experience, is so admirably appropriate
to the objects of reality?

—Albert Einstein

The structure of abstract groups developed in Chapter 2 forms the
basis for the application of group theory to physical problems. Typi-
cally in such applications, the group elements correspond to symmetry
operations which are carried out on spatial coordinates. When these
operations are represented as linear transformations with respect to a
coordinate system, the resulting matrices, together with the usual rule
for matrix multiplication, form a group that is equivalent to the group
of symmetry operations in a sense to be made precise later in this chap-
ter. In essence, these matrices form what is called a representation of
the symmetry group with each element corresponding to a particular
matrix.

For applications to quantum mechanics, as we have seen in Sec-
tion 1.2, the symmetry operations are performed on the Hamiltonian,
whose invariance properties determine the symmetry group. The wave-
functions, which do not all share the symmetry of the Hamiltonian,
will be seen to determine the representations of the symmetry group in
the sense described above. These representations will, in turn, provide
a classification scheme for the eigenfunctions of the Hamiltonian, in
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34 Representations of Groups

analogous fashion to the identification of even and odd eigenfunctions
in Section 1.2. The strength of the group-theoretic formalism that we
will develop is that this procedure can be carried out in a systematic
fashion for a Hamiltonian having any symmetry without undue com-
putational effort.

In this chapter, we will set out the basic definitions that enable us to
construct a mathematical definition of what we mean by a representa-
tion and discuss the basic types of representation. In the next chapter
we will develop a number of remarkable properties of representations
that lie at the heart of applications of discrete group theory to quantum
mechanics.

3.1 Homomorphisms and Isomorphisms

Consider two finite groups G and G′ with elements {e, a, b, . . .} and
{e′, a′, b′, . . .} and which need not be of the same order. Suppose there
is a mapping φ between the elements of G and G′ which preserves their
composition rules, i.e., if a′ = φ(a) and b′ = φ(b), then

φ(ab) = φ(a)φ(b) = a′b′

If the order of the two groups is the same, then this mapping is said to
be an isomorphism and the two groups are isomorphic to one another.
This is denoted by G ≈ G′. If the order of the two groups is not
the same, then the mapping is a homomorphism and the two groups
are said to be homomorphic . Thus, an isomorphism is a one-to-one
correspondence between two groups, while a homomorphism is a many-
to-one correspondence. An isomorphism preserves the structure of the
original group, but a homomorphism causes some of the structure of the
original group to be lost. Both properties are reflected in the behavior
of multiplication tables under these mappings. Homomorphisms and
isomorphisms are not limited to finite groups nor even to groups with
discrete elements.

Example 3.1. We saw in Sec. 2.2 that S3 is isomorphic to the planar
symmetry operations of an equilateral triangle, since there is a one-to-
one correspondence between the elements of the two groups and they
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have the same multiplication table. On the other hand, consider the
correspondence between the elements of S3 and the elements of the
quotient group of S3 discussed in Examples 2.9 and 2.11):

{e, d, f} 7→ {E}, {a, b, c} 7→ {A} (3.1)

i.e. the mapping φ is defined by

φ(e) = E φ(d) = E φ(f) = E
φ(a) = A φ(b) = A φ(c) = A

(3.2)

This is a homomorphism because three elements of S3 correspond to a
single element of the quotient group. To see that this mapping preserves
multiplication, we rearrange the multiplication table of S3 (Example
2.2) as follows:

e d f a b c
e e d f a b c
d d f e c a b
f f e d b c a
a a b c e d f
b b c a f e d
c c a b d f e

7→
E A

E E A
A A E

where the mapping of the multiplication table onto the elements {E ,A}
is precisely that of a two-element group (cf. Example 2.9). This homo-
morphism clearly causes some of the structure of the original group to
be lost. For example, S3 is non-Abelian group, but the two-element
group is Abelian.

3.2 Representations

A representation of dimension n of an abstract group G is a homomor-
phism or isomorphism between the elements of G and the group of
nonsingular n × n matrices (i.e. n × n matrices with non-zero deter-
minant) with complex entries and with ordinary matrix multiplication
as the composition law (Example 2.4). An isomorphic representation
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Figure 3.1: The coordinate system used to generate a two-dimensional rep-
resentation of the symmetry group of the equilateral triangle. The origin of
the coordinate system coincides with the geometric center of the triangle.

is called a faithful representation and a homomorphic representation is
called an unfaithful representation.

According to this definition, if elements a and b of G are assigned
matrices D(a) and D(b), then D(a)D(b) = D(ab). The nonsingular
nature of the matrices is required because inverses must be contained
in the set (Example 2.4). Representations can also be comprised of
numbers; the dimensionality of such representations is unity.

Example 3.2. Consider the following matrix representation of S3 based
on the correspondence with planar symmetry operations of an equilat-
eral triangle:

e =

(
1 0

0 1

)
, a = 1

2

(
1 −

√
3

−
√

3 −1

)
, b = 1

2

(
1
√

3
√

3 −1

)

c =

(−1 0

0 1

)
, d = 1

2

(−1 −
√

3
√

3 −1

)
, f = 1

2

( −1
√

3

−
√

3 −1

)(3.3)

These matrices were generated by regarding each of the symmetry op-
erations as a linear transformation in the coordinate system shown in
Fig. 3.1. Matrices a, b, and c correspond to reflections, so their deter-
minant is −1, while matrices d and f correspond to rotations, so their
determinant is 1. These matrices form a faithful representation of S3.
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Consider now the following mapping between the elements of S3

and the set {1,−1}:

{e, f} 7→ {1}, {a, b, c} 7→ {−1} (3.4)

This is essentially a mapping between the elements of S3 and the de-
terminant of their matrix representation discussed above. Thus, the
identity matrix e and the rotations d and f have determinants of 1,
while the reflections a, b, and c have determinants of −1. The physical
interpretation of this homomorphism is therefore as a mapping from
the individual elements of S3 to their parity, i.e., whether they change
the orientation of the coordinate system (−1) or not (1).1 Since the
determinant provides less information about a transformation than its
matrix representation, it is clear that some information about the group
structure of S3 is not preserved by this homomorphism.

Finally, we note that the mapping of all elements to unity,

{e, a, b, c, d, f} 7→ 1

is a representation of any group, though clearly an unfaithful one. This
is called the identical representation . In the present case, the identical
representation corresponds to a mapping from the group element to
the absolute value of the determinant. Since all of the transformations
preserve the lengths of vectors, any product of these transformations
does so as well.

Representations of groups are important in quantum mechanics for
several reasons. First, the eigenfunctions of a Hamiltonian will trans-
form under the symmetry operations of that Hamiltonian according to
a particular representation of that group. Second, quantum mechanical
operators are often written in terms of their matrix elements, so it is
convenient to write symmetry operations in the same kind of matrix
representation. Moreover, the evaluation of these matrix elements may
sometimes be simplified by identifying the appropriate selection rules

1In terms of the operations of S3, even parity corresponds to an even number
of pairwise interchanges, while odd parity corresponds to an odd number of such
interchanges.



38 Representations of Groups

(Section 1.2). Finally, the algebra of matrices is generally simpler to
carry out than abstract symmetry operations. Thus, in the next section,
we discuss some of the important properties of matrix representations
of groups.

3.3 Reducible and Irreducible Represen-

tations

The definition of a representation provides for considerable flexibility
in constructing matrix representations, which is manifested in several
ways, but also indicates that representations are not unique. We con-
sider some examples.

Given a matrix representation{
D(e), D(a), D(b), . . .

}
of an abstract group with elements {e, a, b, . . .}, we can obtain a new set
of matrices which also form a representation by performing a transfor-
mation known variously as a similarity , equivalence , or canonical trans-
formation (cf. Sec. 2.6):{

BD(e)B−1, BD(a)B−1, BD(b)B−1, . . .
}

(3.5)

Such transformations arise quite naturally, for example, in carrying out
a change of basis for a set of matrices. Thus, suppose one begins with
the matrix equation b = Aa relating two vectors a and b through a
transformation A. If we now wish to express this equation in another
basis which is obtained from the original basis by applying a transfor-
mation B, we can write

Bb = BAa = BAB−1Ba

so in the new basis, our original equation becomes

b′ = A′a′

where b′ = Bb, a′ = Ba, and A′ = BAB−1. A similarity transfor-
mation can therefore be interpreted as a sequence of transformations
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involving first a transformation to the original basis (B−1), then per-
forming the transformation A, and finally transforming back to the
new basis (B). Referring back to the discussion in Section 2.6 on con-
jugacy classes, we see that group elements in the same conjugacy class
represent the same type of transformation (e.g., reflection or rotation)
which can be transformed into one another by particular symmetry
operations.

Suppose we have representations of dimensions m and n. We can
construct a representation of dimensionm+n by forming block-diagonal
matrices:{[

D(e) 0

0 D′(e)

]
,

[
D(a) 0

0 D′(a)

]
,

[
D(b) 0

0 D′(b)

]
, . . .

}
(3.6)

where {D(e), D(a), D(b), . . .} is an n-dimensional representation and
{D′(e), D′(a), D′(b), . . .} an m-dimensional representation of the group
G, and the symbol 0 is an n×m or an m×n zero matrix, as required by
its position in the supermatrix. Each of the m+n-dimensional matrices
formed in this manner is called a direct sum of the n- and m-dimensional
component matrices. The direct sum is denoted by “⊕” to distinguish
it from the ordinary addition of two matrices. Thus, we can write the
representation in (3.6) as{

D(e)⊕D′(e), D(a)⊕D′(a), D(b)⊕D′(b), · · ·
}

The two representations that form this direct sum can be either distinct
or identical and, of course, the block-diagonal form can be continued
indefinitely simply by incorporating additional representations in diag-
onal blocks. However, in all such constructions, we are not actually
generating anything intrinsically new; we are simply reproducing the
properties of known representations. Thus, although representations
are a convenient way of associating matrices with group elements, the
freedom we have in constructing representations, exemplified in (3.5)
and (3.6), does not readily demonstrate that these matrices embody
any intrinsic characteristics of the group they represent. Accordingly,
we now describe a way of classifying equivalent representations and
then introduce a refinement of our definition of a representation.
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To overcome the problem of nonuniqueness posed by representations
that are related by similarity transformations we consider the sum of
the diagonal elements of an n × n matrix A, called the trace of A and
by “tr”:

tr(A) =
n∑
i=1

Aii

The utility of the trace stems from its invariance under similarity trans-
formations, i.e.,

tr(A) = tr(BAB−1)

The importance of this invariance, the proof of which is discussed in
Problem Set 4, is that, although there is an infinite variety of represen-
tations related by similarity transformations, each such representation
has the same set of traces associated with each of its elements.

But working with the trace alone does not alleviate the nonunique-
ness of representations posed by (3.6). To address this issue, we in-
troduce the concept of an irreducible representation. Representations
such as those in (3.6) are termed reducible because they are the direct
sum of two (or more) representations. We could, of course, perform
a similarity transformation to obtain a representation that is not in
block form, but the representation so obtained is still deemed to be
reducible because it was obtained from matrices which originally were
in block form. Based on these considerations, we define reducible and
irreducible representations as follows:

Definition. If the same similarity transformation brings all of the ma-
trices of a representation into the same block form (by which we mean
matrices of the same dimension in the same positions), then this repre-
sentation is said to be reducible . Otherwise, the representation is said
to be irreducible .

Thus, irreducible representations cannot be expressed in terms of
representations of lower dimensionality. One-dimensional representa-
tions are, by definition, always irreducible. Determining the irreducible
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representations of groups is one of the central issues to be covered in
the following chapters.

Example 3.4. All of the representations of S3 discussed in Example
3.2 are irreducible. This is clear for the identical representation and for
the representation in (3.4), since they are composed of numbers. But
we can use these representations to construct the following manifestly
reducible representation of S3:

e =

(
1 0

0 1

)
, a =

(
1 0

0 −1

)
, b =

(
1 0

0 −1

)

c =

(
1 0

0 −1

)
, d =

(
1 0

0 1

)
, f =

(
1 0

0 1

)

The representation in (3.3) is irreducible. There is no similarity
transformation that will bring all of the matrices into block-diagonal
form which, for the case here, means simple diagonalization. The easiest
way to see this is from the point of view of the commutability of two
matrices. If two matrices can be brought into diagonal form by the same
similarity transformation, then they commute. As diagonal matrices,
they certainly commute, so they must also commute in their original
form. But a glance at the multiplication table for these matrices (recall
that they are a faithful representation of S3) in Example 2.2 shows that
they do not all commute. Hence, they cannot all be simultaneously
diagonalized, so this representation is irreducible.

3.4 Unitary Representations

Representations of groups are useful because of orthogonality theorems
which we will prove in the next chapter. As background to that dis-
cussion, we will prove in this section an important result about the
unitarity of representations. But we first review some general proper-
ties of matrices.

We begin by considering the transformation of an n × n matrix A
with entries Aij, i, j = 1, 2, . . . , n, under the action of various opera-
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tions. The complex conjugate of A, denoted by A∗, has entries which
are the complex conjugates of the corresponding entries of A:

(A∗)ij = (Aij)
∗ (3.7)

The transpose of A, denoted by At, has its rows and columns inter-
changed with respect to those of A:

(At)ij = Aji (3.8)

When applied to vectors, the transpose transforms a row vector into a
column vector and vice versa. The transpose of a product of matrices
A,B,C, . . . is

(ABC · · ·)t = · · ·C tB tA t (3.9)

i.e., the order of matrix multiplication is reversed. This can be proven
easily from the definition (3.8). Finally, the adjoint or Hermitian conju-
gate of A, denoted by A†, is the transposed conjugate of A, i.e.

(A†)ij = (Aji)
∗ (3.10)

In common with the transpose, the application of the Hermitian conju-
gate to a product of matrices A,B,C, . . . can be expressed as a product
of Hermitian conjugates of the individual matrices, but with the order
reversed:

(ABC · · ·)† = · · ·C †B †A † (3.11)

3.4.1 Hermitian and Orthogonal Matrices

A matrix A is Hermitian if

A† = A (3.12)

Hermitian matrices and Hermitian operators are familiar from quan-
tum mechanics, where their properties of having real eigenvalues and
orthogonal eigenvectors are of fundamental importance. A matrix A is
orthogonal if its transpose is its inverse:

AtA = AAt = I (3.13)



Representations of Groups 43

where I is the n× n unit matrix. In terms of matrix components, this
condition reads

n∑
k=1

akiakj =
n∑
k=1

aikajk = δij (3.14)

where

δij =

{
0, if i 6= j;

1, if i = j
(3.15)

is the Kronecker delta . Thus, the rows of an orthogonal matrix are
mutually orthogonal, as are the columns. The consequences of the
orthogonality of a transformation matrix can be seen by examining the
effect of applying an orthogonal matrix A to two n-dimensional vectors
u and v, yielding vectors u′ and v′:

u′ = Au, v′ = Av

We now take the scalar, or ‘dot,’ product between u′ and v′:

(u′,v′) = (u′)tv′ = (Au)tAv = utAtAv = utv = (u,v) (3.16)

where we have used (3.11) and the fact that A is orthogonal. This
shows that the relative orientations and the lengths of vectors are pre-
served by orthogonal transformations. Such transformations are either
rigid rotations, which preserve the “handedness” (i.e., left or right)
of a coordinate system, and are called proper rotations, or reflections,
which reverse the “handedness” of a coordinate system, and are called
improper “rotations.”

3.4.2 Unitary Matrices

A third type of matrix, called unitary , has the property that

A†A = AA† = I (3.17)

By writing this condition in terms of matrix components,

n∑
k=1

a∗kiakj =
n∑
k=1

aika
∗
jk = δij (3.18)
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we see that, in common with orthogonal matrices, the rows and columns
of a unitary matrix are orthogonal, but with respect to a different scalar
product. For two vectors u and v, this scalar product is defined as

(u,v) = u†v (3.19)

This generalizes the familiar dot product to complex vectors in n di-
mensions. We can now show, by proceeding as above, that unitary
transformations leave the scalar product invariant:

(u′,v′) = (u′)†v′ = (Au)†Av = u†A†Av = u†v = (u,v) (3.20)

The property of unitarity, when applied to operators, is of immense
importance in quantum mechanics because it enables changes of bases
to be performed while preserving the orthogonality of bases and, thus,
the overlap between wavefunctions. In this sense, unitary matrices
are associated with proper and improper “rotations,” in analogy with
orthogonal matrices.

3.4.3 Diagonalization of Hermitian Matrices∗

Let H be an n× n Hermitian matrix. The eigenvalue equation for this
matrix is

Ha = λa (3.21)

By writing this equation as

(H − λI)a = 0 (3.22)

the eigenvalue equation in (3.21) has nontrivial solutions for a if and
only if the determinant of the matrix of coefficients in (3.22) vanishes:

det(H − λI) = 0 (3.23)

The expansion of the determinant leads to an nth-order polynomial in
λ whose solution yields the n (not necessarily distinct) eigenvalues of
H: λ1, λ2, . . . , λn.

We now show that the eigenvectors of H which correspond to dis-
tinct eigenvalues are orthogonal. Consider the eigenvalue equations for
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two eigenvectors a and b corresponding to distinct eigenvalues λ and
µ, respectively:

Ha = λa (3.24)

Hb = µb (3.25)

We now take the scalar product between b and (3.24) and that between
(3.25) and a:

b†(Ha) = λb†a (3.26)

(b†H†)a = µb†a (3.27)

Subtracting (3.27) from (3.26), and using the fact that H is Hermitian
yields

(λ− µ)b†a = b†Ha− b†H†a = 0 (3.28)

which, since λ 6= µ, implies that b†a = 0, i.e., that a and b are or-
thogonal. If λ and µ are not distinct, we must use a Gram–Schmidt
procedure to explicitly construct an orthogonal set of eigenvectors as-
sociated with the degenerate eigenvalue. Thus, the eigenvectors of a
Hermitian matrix can always be chosen to form an orthogonal set.

Consider the matrix U whose columns are the eigenvectors of H:

U = (a1,a2, . . . ,an)

We can then write (3.21) in a form that subsumes all the eigenvectors
of H as follows:

HU = UD (3.29)

where D is the diagonal matrix whose entries are the eigenvalues of H:

D =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λd
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Since the rows of U are composed of the (orthogonal) eigenvectors of
H, it has the property that (cf. 3.18)

U †U = UU † = I

i.e., U−1 = U †, so U is unitary. Hence, we can rewrite (3.29) as

U−1HU = U †HU = D

We have proven the following theorem:

Theorem 3.1. Any Hermitian matrix can be diagonalized by an ap-
propriate unitary transformation.

This theorem will be used in the next section to prove an important
result concerning the existence of unitary group representations.

3.4.4 Transformation to Unitary Representations

We have seen in Section 3.3 that there is considerable flexibility in
constructing group representations. In this section, we take a first step
in restricting this freedom by showing that any representation can be
expressed entirely in terms of unitary matrices. Quite apart from the
convenient properties of unitary matrices discussed in Section 3.4.2,
this theorem allows to think of group representations as proper and
improper complex “rotations.”

Theorem 3.2. Every representation can be brought into unitary form
by a similarity transformation.

Proof. Let {A1, A2, . . . , A|G|} be a d-dimensional representation of
a group G, i.e., the Aα are a set of |G| d×d matrices with nonvanishing
determinants. From these matrices we form a matrix H given by the
sum

H =
|G|∑
α=1

AαA
†
α
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This matrix is Hermitian because, using the property (3.11),

H† =
∑
α

(AαA
†
α)† =

∑
α

AαA
†
α = H

According to Theorem 3.1, any Hermitian matrix can be diagonalized
by some unitary transformation U . Denoting the diagonalized form of
H by D, we have D = U †HU , which enables us to write D as

D =
∑
α

U †AαA
†
αU =

∑
α

(U †AαU)(U †A†αU) =
∑
α

(U †AαU)(U †AαU)†

By introducing the notation Ãα = U †AαU , we can write the last equa-
tion in a more concise form as

D =
∑
α

ÃαÃ
†
α (3.30)

The diagonal elements of D are real, because

Dkk =
∑
α

∑
j

(Ãα)kj(Ã
†
α)jk

=
∑
α

∑
j

(Ãα)kj(Ãα)∗kj

=
∑
α

∑
j

∣∣∣(Ãα)kj

∣∣∣2
for k = 1, 2, . . . , d, and positive, because the summation over j includes
a diagonal element of the identity, which is a d × d unit matrix, and
hence is equal to unity. Thus, the diagonal matrix D1/2,

D1/2 =



D
1/2
11 0 · · · 0

0 D
1/2
22 · · · 0

...
...

. . .
...

0 0 · · · D
1/2
dd


and D−1/2, which is given by an analogous expression, both have posi-
tive entries.
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We now form the matrices

Bα = D−1/2ÃαD
1/2

from which we obtain the corresponding Hermitian conjugates:

B†α = (D−1/2ÃαD
1/2)† = D1/2Ã†αD

−1/2

We will now demonstrate that the Bα are unitary by first showing that
the product BαB

†
α is equal to the identity matrix. The product BαB

†
α

is given by

BαB
†
α =

(
D−1/2ÃαD

1/2
)(
D1/2Ã†αD

−1/2
)

= D−1/2ÃαDÃ†αD
−1/2

The definition of D in (3.30) and the associativity of matrix multipli-
cation allow us to write this expression as

BαB
†
α = D−1/2

∑
j

ÃαÃβÃ†βÃ†αD
−1/2

= D−1/2
∑
j

(ÃαÃβ)(ÃαÃβ)†D−1/2

Since the Aα are a representation of G, then so are the Ãα (Problem 3,
Problem Set 4). Hence, the product ÃαÃβ is another matrix Ãγ in this
representation. Moreover, according to the Rearrangement Theorem,
the sum over all β means that the set of Ãγ obtained from these prod-
ucts contains the matrix corresponding to each group element once and
only once. Thus,

BαB
†
α = D−1/2

∑
γ

ÃγÃ
†
γ︸ ︷︷ ︸

D

D−1/2 = I

where I is the d× d unit matrix. This result can also be used to show
that B†αBα = I. Thus, the Bα, which are obtained from the original
representation by a similarity transformation,

Bα = D−1/2U−1AαUD
1/2 = (UD1/2)−1Aα(UD1/2)

form a unitary representation of G. Hence, without any loss of gener-
ality, we may always assume that a representation is unitary.
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3.5 Summary

The main concepts introduced in this chapter are faithful and unfaithful
representations, based on isomorphic and homomorphic mappings, re-
spectively, reducible and irreducible representations, and the fact that
we may confine ourselves to unitary representations of groups. In the
next chapter we will focus on irreducible representations, both faithful
and unfaithful, since these cannot be decomposed into representations
of lower dimension and are, therefore, “intrinsic” to a symmetry group,
since all reducible representations will be shown to be composed of
direct sums of irreducible representations. Irreducible representations
occupy a special place in group theory because they can be classified for
a given symmetry group solely according to their traces and dimension.
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