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1.3 Percolation in d = 1 on a lattice with periodic boundary conditions.

(i)

(i)

(iii)

When s < L — 2, an s-cluster must be bounded by two empty
sites. For s = L —1, there is only one empty site in the system
while for s = L, all sites are occupied. Clearly we cannot have
s > L. Thus

p*(1 —p)? fors < L—2
L—1
p~H1-p) fors=L-1
n(s,p) = 1.3.1
(s,p) o tor s — I (1.3.1)
0 for s > L.

A cluster with s = L is percolating and hence not to be char-
acterized as being finite. Therefore, S>7"' sn(s, p) represents
the probability that a site belongs to a finite cluster.

In a d = 1 system of size L, the probability of an arbitrarily
selected site to belong to the spanning (infinite) cluster

Poo(L,p) = p*. (1.3.2)

Alternatively, an occupied site either belongs to the spanning
cluster or to a finite cluster (s < L), that is,

L—1
Poo(Lap) =P - S?’L(S,p)

1-p

o 1=p)1—=(L-Dp" )+ (p-p- "

=p—(L-1p" " (1-p)—(1-p)°p

=ph. (1.3.3)

(1-p)?
=p—(L—-1)p" '+ (L -1p" = (p-p>)(1—(L—-1)p" %) —p* +p"
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(iv) (a) In d =1 percolation,

gz_ﬁ@lnp:—%@p:exp <—%> (1.3.4)

Thus

Pyo(L,€) =ph = |:eXp (—%)]L = exp (-%) . (1.3.5)

(b) Write the order parameter using the scaling form

PuleiD) = e (5 ) =PI, (130)
where
B/v=0 (1.3.7)

and a scaling function
L
P(z) = exp(=)
{constant for L <&
x

(1.3.8)
decaying rapidly for L > £.
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1.4 Cluster number density scaling functions in d=1 and the Bethe lattice.

(i) (a) Rewriting the cluster number density in d = 1 we find

S

n(s,p) = (1—p)’p

. 1
= (pc — p)” exp(—s/s¢) with s¢ =~
=5 %[s(pe — D) exp(—s/s¢)
~ 572 (s/5¢)" exp(—s/se) for p — p;
= s"Gra(s/s¢) (1.4.1)
with
Gra(s/se) = (s/s¢)” exp(—s/s¢). (1.4.2)
and
se = (pe —p)~' forp—p,. (1.4.3)
Thus we identify
T =2, (1.4.4a)
o=1, (1.4.4b)
a=1, (1.4.4c)
= (1.4.4d)

(b) From the graph of the scaling function G4, see Fig-
ure 1.4.1, we see that for small arguments s < s¢, the
function increases quadratically in the argument s/s¢
while it decays exponentially fast for s > s¢. Indeed,
such cluster sizes are exponentially rare as the character-
istic cluster size s¢ is the typical size of the largest cluster.

(c) The scaling function Gi4(x) = 22 exp(—x) and

gf}i) (r) = 2zexp(—z) — 2% exp(—2) = (22 — 2?) exp(—x)
gﬁ) () = (2 — 22 — 22 + 2?) exp(—2) = (2 — 42 + 2?) exp(—2)

Hence G14(0) = GV (0) = 0,G{?(0) = 2. Thus the Taylor
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Fig. 1.4.1 The scaling function G14 in d = 1 increases like (s/s¢)? for small arguments
and decays (exponentially) fast for large arguments.

expansion of G4 around zero,

Grals/s¢) = Gra(0) + G5 (0)s /s¢ + 5G(0) (s/s¢)” + -
= (s/se)’ + - - (1.4.5)

which is consistent with Figure 1.4.1.
(ii) (a) On a Bethe lattice with z = 3 where p. = 1/2 we have

n(s,p) o< s°/% exp(—s/s¢) s>1
1 1

se=—T————5 — (P _pc)_2 for p — pe.
In(dp — 4p2) 4

Thus we identify the scaling function

GBethe(s/s¢) = exp(—s/s¢). (1.4.6)

with
r=5/2 (1.4.7a)
o=1/2 (1.4.7b)

b=1/4. (1.4.7¢)
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It would be possible to determine a by applying a normal-
isation constraint. For example when p < p. the cluster
number density must satisfy

Z sn(s,p) = GZ $' 7" GRethe(8/5¢) = P. (1.4.8)
s=1 s=1

This constraint will determine a.

From the graph of the scaling function Gpethe, see Fig-
ure 1.4.2, we see that for small arguments s < s¢, the
function is approximately constant while it decays expo-
nentially fast for s > s¢. Indeed, such cluster sizes are
exponentially rare as the characteristic cluster size s¢ is
the typical size of the largest cluster.
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Fig. 1.4.2 The scaling function Ggetpe for the Bethe lattice is approximately constant
for small arguments and decays exponentially fast for large arguments.

(¢) Clearly

Opethe(7) =1 —2 + -~ 1, (1.4.9)

consistent with Figure 1.4.2.
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1.5 Moments of the cluster number density.

(i) We approximate the sum by an integral:

ws-book9x6

Mi(p) =) s"n(s,p)
s=1
= Z as""7G(s/s¢)
s=1
~ as®"7G(s/s¢) ds
1
= / a (s§u)k77 G(u)se du with u = s/s¢
1/s¢
= s?H_Ta/ uF TG (u) du
1/s¢
= lp = pl e [Ty du tor p
0
=T |p—pc| (1.5.1)
where
k+1-—
=TT (1.5.2a)
o
'y = aka*T/ TG (u) du. (1.5.2b)
0

The critical amplitude T'y is just a number independent of p.
Note that we recover the scaling relation

3—T

v = > (1.5.3)
by letting k& = 2.
(ii) The moment ratio
M MF=2
9k = M1
2
Fkrk—Q
Fkil (1.5.4)
2

2

_ S uFTG (w) du [ ;7 ut TG (u) du) -
[y u2=7G(u) du]*™
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(iii) Ind = 1 percolation, 7 = 2,0 = 1,a = 1,b = 1 and the scaling
function Gig(u) = u? exp(—u) so

Ty = / uF exp(—u) du
0
= k!

1.6 Undversality of the ratio of amplitudes for the average cluster size.
By definition

>ory sn(s,p) (1.6.1)

where the denominator Yo ; sn(s,p) = p. at p = p.. Since we are
ultimately interested in the limit p — p., we simply substitute the
denominator with p..

We thus find

x(p) =

o0

pex(p) = s*n(s,p)

s=1

= ZasQiTgi(s/sQ
s=1

R~ /OO as> "Gy (s/s¢)ds (1.6.2)
1

Substituting u = s/s¢, that is s = scu and ds = sedu. With the
new lower integration limit 1/s¢ we have

ch(p) = // a’(sfu)ziT gj:(’u,),% du
1/s¢
= sg’*Ta/ u?" "Gy (u) du
1/s¢

|p —pc|7(377)/"ab377/ u277gi(u) du for p — p,
0

where we, in the last step, have substituted s¢ = b|p — pe| /7 for
p — p. and changed the lower limit to zero as s¢ diverges at p = p..
(i) Assume p < p.. Then, in the limit p — p_,

o —@enyed® T [
x(p) = (pec —p) A G_(u)du (1.6.3)
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with
3—71
v = (1.6.4a)
ag
ab3=" [
= / u?""G_ (u) du. (1.6.4b)
Pc 0

(ii) Assume p > p.. Then, in the limit p — pT,

3=/ "7

x(p) = (p — pe) /000 u?7TG, (u)du  (1.6.5)

Pe
with
3

=21 (1.6.6a)
o

+ abs_T > 2—7

= ’ u*" "G4 (u) du. (1.6.6b)
e Jo

(iii) (a) By inspection vy~ =+t = (3 —171)/0.
(b) The ratio of critical amplitudes

rt UG (u) du
== fooo u2Tg Eui - (1.6.7)
0 +
is independent of the proportionality constants a and b
and p. and only depends on the universal critical exponent
7 and the universal scaling functions G4. Thus the ration
't /T~ is itself universal.

(c) The ratio of the critical amplitudes I't /I~ is related to
the distance between the numerical results for the average
cluster size for p < p. and p > p. respectively. Numerical
simulations confirm that I'" /T~ is universal and one finds
't /T~ ~ 200 using the numerical results displayed.
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