- 1.8 Finite-size scaling and scaling function for the average cluster size.
 - (i) The average cluster size is by definition

$$\chi(p; L = \infty) = \frac{\sum_{s=1}^{\infty} s^2 n(s, p)}{\sum_{s=1}^{\infty} s n(s, p)}.$$
 (1.8.1)

For $p \to p_c$, the denominator approaches the constant p_c . Substituting the sum with an integral we find

$$\chi(p; L = \infty) \propto \int_{1}^{\infty} s^{2} n(s, p) ds$$

$$= \int_{1}^{\infty} s^{2-\tau} \mathcal{G}(s/s_{\xi}) ds$$

$$= \int_{1/s_{\xi}}^{\infty} (us_{\xi})^{2-\tau} \mathcal{G}(u)s_{\xi} du$$

$$= s_{\xi}^{3-\tau} \int_{1/s_{\xi}}^{\infty} u^{2-\tau} \mathcal{G}(u) du$$

$$\propto |p - p_{c}|^{-(3-\tau)/\sigma}$$
(1.8.2)

as for $p\to p_c, s_\xi\to\infty$ and the integral approaches a constant number. Thus

$$\gamma = \frac{3 - \tau}{\sigma}.\tag{1.8.3}$$

(ii) For $p \to p_c$, the correlation length

$$\xi(p) \propto |p - p_c|^{-\nu} \Rightarrow |p - p_c| \propto \xi^{-\frac{1}{\nu}},$$
 (1.8.4)

that is,

$$\chi(\xi; L = \infty) \propto |p - p_c|^{-\gamma} \propto \xi^{\gamma/\nu} \quad \text{for } p \to p_c.$$
 (1.8.5)

(iii) (a) There are only two relevant length scales in the problem, the correlation length ξ and the lattice size L. When $L \ll \xi$, L will be the limiting length scale taking the role of ξ and thus

$$\chi(\xi; L) \propto L^{\gamma/\nu} \quad \text{for } p \to p_c, 1 \ll L \ll \xi..$$
 (1.8.6)

(b) When $L \gg \xi$, we 'do not know' that the lattice is finite and $\chi(\xi; L)$ will not be affected by the finite size of the

Answers to exercises: Percolation

19

lattice. Thus we have

$$\chi(\xi; L) = \begin{cases} \xi^{\gamma/\nu} & \text{for } L \gg \xi \\ L^{\gamma/\nu} & \text{for } L \ll \xi \end{cases} = \xi^{\gamma/\nu} \mathcal{X}(L/\xi) \qquad (1.8.7)$$

where the scaling function

$$\mathcal{X}(x) = \begin{cases} constant & \text{for } x \gg 1\\ x^{\gamma/\nu} & \text{for } x \ll 1. \end{cases}$$
 (1.8.8)

- (c) If $p = p_c$, the correlation length $\xi = \infty$ and we are always in the case $L \ll \xi$ $(x \ll 1)$. Thus by plotting $\log \chi(L, \infty)$ versus $\log L$ we get a straight line with slope γ/ν .
- (iv) At $p = p_c$, $\xi = \infty$ so according to Equation (1.8.6) the average cluster size $\chi(\xi = \infty; L) \propto L^{\gamma/\nu}$. Hence we find

$$\chi(\xi = \infty; L) \propto \int_{1}^{\infty} s^{2} n(s, p_{c}, L) ds$$

$$= \int_{1}^{\infty} s^{2-\tau} \tilde{\mathcal{G}}(s/L^{D}) ds$$

$$= \int_{1/L^{D}}^{\infty} (uL^{D})^{2-\tau} \tilde{\mathcal{G}}(u) L^{D} du$$

$$= L^{D(3-\tau)} \int_{1/L^{D}}^{\infty} u^{2-\tau} \tilde{\mathcal{G}}(u) du$$

$$\propto L^{D(3-\tau)}$$
(1.8.9)

as for $L \gg 1$ the integral approaches a number. Thus

$$\frac{\gamma}{\nu} = D(3 - \tau).$$
 (1.8.10)

- 1.9 Finite-size scaling and scaling function for the order parameter.
 - (i) (a) The order parameter $P_{\infty}(p; L = \infty)$ is the probability that (at occupation probability p) an arbitrary site belongs to the percolating infinite cluster.
 - (b) For $p \leq p_c$ there are no percolating infinite clusters, so $P_{\infty}(p; L = \infty) = 0$. The critical occupation probability is the concentration p_c above which a percolating infinite cluster appears for the first time and the order parameter becomes nonzero for $p > p_c$. Clearly $P_{\infty}(p = 1; L = \infty) = 1$.

(c) The probability that an arbitrary site belongs to an scluster is $sn(s,p;L=\infty)$. The probability that an arbitrary site belongs to any finite cluster is $\sum_{s=1}^{\infty} sn(s,p;L=\infty)$. The relation thus states that for a given site

P(in infinite cluster) = P(occupied) - P(in finite cluster)

$$P_{\infty}(p; L = \infty) = p - \sum_{s=1}^{\infty} sn(s, p; L = \infty).$$

(ii) (a) For $p \to p_c^+$, the correlation length

$$\xi(p) \propto (p - p_c)^{-\nu} \Rightarrow (p - p_c) \propto \xi^{-\frac{1}{\nu}},$$
 (1.9.1)

that is,

$$P_{\infty}(\xi; L = \infty) \propto (p - p_c)^{\beta} \propto \xi^{-\beta/\nu}. \tag{1.9.2}$$

(b) There are only two relevant length scales in the problem, the correlation length ξ and the lattice size L. When $1 \ll L \ll \xi$, L will be the limiting length scale taking the role of ξ and thus

$$P_{\infty}(\xi; L) \propto L^{-\beta/\nu}$$
 for $1 \ll L \ll \xi, p \to p_c$. (1.9.3)

- (c) If $p = p_c$, the correlation length $\xi = \infty$ and we are always in the case $L \ll \xi$ ($x \ll 1$). Thus by plotting $\log P_{\infty}(\infty; L)$ versus $\log L$ we get a straight line with slope $-\beta/\nu$.
- (iii) (a) The order parameter at $p=p_c$ in an infinite lattice is zero. In the limit $L\to\infty$, the cluster number density $n(s,p_c;L)$ tends to $s^{-\tau}g(0)$, so also the right hand side equals zero.
 - (b) At $p = p_c, \xi = \infty$ so according to Equation (1.9.3) the order parameter $P_{\infty}(\xi = \infty, L) \propto L^{-\beta/\nu}$. Using Equation (1.95) in the question and substituting the scaling law for the cluster number density we find

$$\begin{split} P_{\infty}(\xi = \infty; L) &= \sum_{s=1}^{\infty} s^{1-\tau} [g(0) - g(s/L^D)] \\ &\propto \int_{1}^{\infty} s^{1-\tau} [g(0) - g(s/L^D)] \; ds \qquad \text{main contribution from } s \gg 1 \\ &= \int_{1/L^D}^{\infty} (uL^D)^{1-\tau} [g(0) - g(u)] L^D \; du \qquad u = s/L^D \\ &= L^{D(2-\tau)} \int_{1/L^D}^{\infty} u^{1-\tau} [g(0) - g(u)] \; du \\ &\propto L^{D(2-\tau)} \end{split}$$

as for $L \gg 1$ the integral approaches a number (lower limit approaches zero). Thus

$$P_{\infty}(\xi = \infty; L) \propto L^{-\beta/\nu} \propto L^{D(2-\tau)}$$
 for $L \gg 1$, (1.9.5)

implying the scaling relation

$$-\frac{\beta}{\nu} = D(2 - \tau). \tag{1.9.6}$$

- **1.13** Renormalisation and finite-size scaling of the cluster no. density.
 - (i) The square of the radius of gyration $R^2(s)$ for a given s-cluster is defined as the average square distance to the centre of mass,

$$R^{2}(s) = \frac{1}{s} \sum_{i=1}^{s} |r_{i} - r_{cm}|^{2},$$

where r_i denotes the position of the *i*th-particle and r_{cm} the centre of mass. The radius of gyration R_s^2 is the average of $R^2(s)$ over all s-clusters, that is,

$$R_s = \sqrt{\langle R^2(s) \rangle}. (1.13.1)$$

The radius of gyration R_s measures the linear extent of an s-cluster. Thus if $\ell \gg R_s$, the finite cluster is contained within the box of size ℓ implying $M(\ell,R_s)=s$. If $\ell \ll R_s$, it appears as if the cluster in infinite (we don't know it is finite). At $p=p_c$, the cluster is fractal with $M(\ell,R_s) \propto \ell^D$, D being the fractal dimension of the infinite percolating cluster. Thus

$$M(\ell, R_s) \propto \begin{cases} \ell^D & \text{for } \ell \ll R_s, \\ s \propto R_s^D & \text{for } \ell \gg R_s \end{cases}$$
 (1.13.2)

since the mass of the infinite cluster at $p = p_c$ is proportional to ℓ^D , it is natural to assume that also $s \propto R_s^D$. Thus

$$M(\ell, R_s) = \ell^D m(\ell/R_s), \qquad (1.13.3)$$

whit a crossover function

$$m(x) \propto \begin{cases} \text{constant} & \text{for } x \ll 1 \\ x^{-D} & \text{for } x \gg 1 \end{cases}$$
 (1.13.4)

that is, $D_1 = D$ and $D_2 = 1$.

(ii) From above, we have $M(\ell, R_s) = R_s^D$ for $\ell \gg R_s$. The real space renormalisation transformation renormalises all length scales by a factor b, e.g., $R_s \to R_s/b$. Thus

$$s' = M(\ell/b, R_s/b) = (R_s/b)^D = R_s^D/b^D = s/b^D$$
 (1.13.5)

where we have used $\ell \gg R_s \Rightarrow \ell/b \gg R_s/b$.

(iii) $sn(s, p_c; L)$ is the probability that a site belongs to a cluster of size s in a lattice of linear size L per lattice site while $s'n(s', p_c; L/b)$ is the probability that a site belongs to a cluster of size s' in a lattice of linear size L/b per lattice site. As the number of clusters in the original and renormalised lattice is the same we have

$$L^{d}sn(s, p_{c}; L) = (L/b)^{d}s'n(s', p_{c}; L/b) \Rightarrow sn(s, p_{c}; L) = b^{-d}s'n(s', p_{c}; L/b),$$
(1.13.6)

with $s' = s/b^D$, see question (ii).

(iv) Given the scaling form of the cluster number density

$$n(s, p) = s^{-\tau} \mathcal{G}(s/s_{\xi}) \text{ for } p \to p_c, s \gg 1.$$
 (1.13.7)

As the characteristic cluster size $s_\xi \propto \xi^D$ where the correlation length $\xi \propto |p-p_c|^{-\nu}$ we find

$$n(s,p) = s^{-\tau} \mathcal{G}(s/\xi^D).$$
 (1.13.8)

In a finite system at $p = p_c$ where $L \ll \xi = \infty$, one would thus, using a finite-size scaling argument, expect

$$n(s, p) = s^{-\tau} \tilde{\mathcal{G}}(s/L^D).$$
 (1.13.9)

For $s/L^D \ll 1 \Leftrightarrow s \ll L^D$ (i.e. $L \to \infty$), the cluster number density must be independent of system size, leaving

$$n(s, p_c) \propto s^{-\tau} \Rightarrow \tilde{\mathcal{G}}(x) = \text{constant} \quad x \ll 1.$$
 (1.13.10)

Clearly $s/L^D\gg 1\Leftrightarrow s\gg L^D$ is very unlikely, so $\tilde{\mathcal{G}}(x)$ decays rapidly for $x\gg 1$.

(v) Combining Equations (1.13.8) (1.13.6) and (1.13.5) we find

$$s^{1-\tau}\mathcal{G}(s/L^{D}) = b^{-d}(s/b^{D})(s/b^{D})^{-\tau}\mathcal{G}\left(\frac{s/b^{D}}{(L/b)^{D}}\right)$$
$$= b^{-d-D+D\tau}s^{1-\tau}\mathcal{G}(s/L^{D}), \qquad (1.13.11)$$

from which we conclude

$$-d - D + D\tau = 0, (1.13.12)$$

implying the scaling relation

$$\tau = \frac{d+D}{D}.\tag{1.13.13}$$