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1. Taylor expansion

(i) The Taylor expansion of the function f(x) = ln(1− x) about the point x = 0 to order 3 is
given by

f(x) ≈= f(0) + f (1)(0)x+
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3. (1.1)

We find

f(0) = ln(1) = 0

f (1)(x) =
1

1− x · (−1) = −(1− x)−1 ⇒ f (1)(0) = −1,

f (2)(x) = −(1− x)−2 ⇒ f (2)(0) = −1,

f (3)(x) = −2(1− x)−3 ⇒ f (3)(0) = −2,

that is,

f(x) ≈ 0− x+
−1

2!
x2 +

−2

3!
x3 = −x− 1

2
x2 − 1

3
x3

→ −x for x→ 0.

Graphically,
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Figure 1.1: The Taylor expansion of the function ln(1 − x) (solid line) to order 3 (dotted line) and
order 1 (dashed line). When x → 0, the approximation ln(1 − x) ≈ −x is valid. Notice that in (a),
the x-axis is linear while in (b) it is logarithmic. We use the notation Tn(x) for the Taylor expansion
to order n.

(ii) The Taylor expansion of the function f(p) = p− (1−p)3

p2 about the point p = 1
2 to order 2 is

given by

f(p) ≈ f(
1

2
) + f (1)(

1

2
)(p− 1/2) +

f (2)(1
2 )

2!
(p− 1/2)2. (1.2)

We find

f(
1

2
) =

1

2
− (1

2 )3

(1
2 )2

= 0

f (1)(p) = 1 + 3(1− p)2p−2 + 2(1− p)3p−3 ⇒ f (1)(
1

2
) = 6,

f (2)(p) = −6(1− p)p−2 − 6(1 − p)2p−3 − 6(1 − p)2p−3 − 6(1 − p)3p−4 ⇒ f (2)(
1

2
) = −48,
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that is, to second order in (p− 1/2)

f(p) ≈ 6(p− 1/2) − 24(p− 1/2)2,

implying A = 6 and B = −24.

Graphically,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Occupation probability p

0.0

0.5

1.0

f(
p)

f(p)
T1(p) = 6 (p − 0.5)
T2(p) = 6(p−0.5)−24(p−0.5)

2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p−pc

10
−4

10
−3

10
−2

10
−1

10
0

f(
p)

f(p)
T1(p) = 6 (p − 0.5)
p−pc = 0.0025

Figure 1.2: (a) The Taylor expansion of the function f(p) (solid line) to first order (dashed line) and
second order (dotted line). (b) In a double logarithmic plot, one can see that when p− 1/2 ≤ 0.0025,
the first order approximation f(p) ≈ 6(p − 1

2) is excellent and similarly for the Taylor expansion of
second order. Again we use the common notation Tn(p) for the Taylor expansion to order n.
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2. Power-law probability density

(i) As P (h) = 0 for h < hmin, the condition for normalisation is

∫ ∞

hmin

P (h) dh =

∫ ∞

hmin

Ah−2 dh = A[−h−1]∞hmin = Ah−1
min = 1⇔ A = hmin.

(ii) (a) By definition, we have to integrate the probability density over h ≥ hmax:

P (h ≥ hmax) =

∫ ∞

hmax

hminh
−2 dh = hmin[−h−1]∞hmax =

hmin
hmax

.

(b) The average number of days one would have to wait to see one event with h ≥ hmax is

1

P (h ≥ hmax)
=
hmax
hmin

.

(iii) (a) There is no upper limit to the level of the river, so it is impossible to guarantee safety
forever.

(b) There are 365N days in N years. The probability of having no overflow in 365N
consecutive days is

P (No overflow in 365N days) =

(
1− hmin

hmax

)365N

≥ p⇒

1− hmin
hmax

≥ p
1

365N ⇒

hmax ≥ hmin

1− p 1
365N

.

(c) Inserting N = 10, p = 0.90 and hmin = 0.01 m we find

hmax ≥
0.01 m

1− 0.90
1

3650

≈ 346 m.

(iv) (a) The average level

〈h〉 =

∫ ∞

hmin

hminh h
−2 dh = hmin

∫ ∞

hmin

h−1 dh = hmin[ln(h)]∞hmin =∞.

Note that this is a so-called marginal case where the average level diverges logarith-
mically. A power-law probability with an exponent less than −2 would have a finite
average value, while a power-law probability with an exponent greater than −2 would
diverge algebraically.

(b) One could imagine that there exists an upper cut-off, hc, in the level of the river for
the probability density such that P (h) = 0 for h ≥ hc. Another possibility would be
to modify the power-law exponent such that it is slightly less than −2.
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