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Complexity and Criticality

• Criticality

– Ising model

– Phase transition at (Tc, 0)

– Scale invariance and £xed points

• Complexity

– Earthquakes and rainfall

– Rice-pile experiment

– Oslo rice-pile model

– Self-organised criticality
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De£nition Criticality: Ising Model

The simplest model of a ferromagnet consists of N spins si = ±1 = ↑ or ↓,
i = 1, . . . , N with constant nearest-neighbour interaction J > 0 placed in a

uniform external £eld H . The energy of microstate {si} = {s1, s2, . . . , sN}
E{si} = spin-spin interaction + spin-external £eld interaction

= −J
∑

〈ij〉
sisj −H

N∑

i=1

si.
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The partition function The free energy per spin

Z(T,H) =
∑

{si}
exp

(
−βE{si}

)
. f(T,H) = − 1

N
kBT lnZ.

The magnetisation per spin The susceptibility per spin

m(T,H) = −
(
∂f

∂H

)

T

. χ(T,H) =

(
∂m

∂H

)

T

.



Phase transition at (T,H) = (Tc, 0) Criticality: Ising Model

Free energy per spin in mean-£eld model.

Magnetisation per spin in mean-£eld model.
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Phase transition at (T,H) = (Tc, 0) Criticality: Ising Model

Assume H = 0. In equilibrium, the free energy is minimised

F = 〈E〉 − TS.

T = 0: Energy minimised: spins are aligned: m(0, 0) = ±1.

Con£gurations are self-similar. The correlation length ξ(0, 0) = 0.

T =∞: Entropy maximised: spins are randomly orientated: m(∞, 0) = 0.

Con£gurations are self-similar. The correlation length ξ(∞, 0) = 0.

T = Tc: 〈E〉 and TS balanced. Spins are “undetermined”: m(Tc, 0) = 0.
Con£gurations are self-similar. The correlation length ξ(Tc, 0) =∞.

T →∞T → 0 T = Tc



Scale invariance and £xed points Criticality: Ising Model
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Scaling factor b > 1.

0 1

m(T, 0) ∝ ±(Tc − T )β for T → T−c .

ξ(T, 0) ∝ |Tc − T |−ν for T → Tc.



Scale invariance and £xed points Criticality: Ising Model

T < Tc T = Tc T > Tc

ξ → ξ/b

ξ/b→ ξ/b2

Fixed points ξ = ξ/b ξ = 0 ξ =∞ ξ = 0



Warning Equilibrium vs. Non-equilibrium

• No truly isolated natural systems exist.

• Most systems have a ¤ux of mass or energy passing though them.

• Most systems are in a non-equilibrium steady state.

• Take great care not to apply results from equilibrium systems outside their

range of validity.



Plate tectonics Complexity: Earthquakes

Palace Hotel, San Francisco, U.S.A.
5:12AM – 18 April, 1906.

World-wide occurrence of earthquakes.

Outline plate boundaries.

1.1.1997− 30.6.1997,M > 4

Earthquake catalogue



Scale invariance: Gutenberg-Richter Law Complexity: Earthquakes
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At a fault, strain builds up slowly.
Energy released through earthquakes.
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Rain event Complexity: Rainfall

Europe, August 2002.

Level of River Elbe = 9.39m.

Rain event over Grand Canyon
dissipates energy in the

atmosphere.



Rain gauges Complexity: Rainfall

Standard rain gauge: Tipping bucket.

Resolution of rain rate qmin = 0.25 mm/h.

Temporal resolution ∆t = ? min.

Radar: Resolution of rain rate
qmin = 0.005 mm/h.

Temporal resolution ∆t = 1 min.



Rain event de£nition Complexity: Rainfall
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τM = 1.4

A rain event is a sequence of successive

non-zero rain rates. The event size
M = q(t+ 1) + · · ·+ q(t+ T ).

with event duration T .

Rain-equivalent of Gutenberg-Richter Law:

N(M) ∝M−τM .
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Conclusion Complexity: Earthquakes and Rainfall

• Rain is a complicated spatio-temporal phenomenon.

• Trickles, drizzle, bursts, showers, downpours, and torrents.

• Identifying rain events as the basic entities reveals that

– The frequency-event size distribution is scale free.

This is the rain-equivalent of the Gutenberg-Richter law for earthquakes.

– The frequency-drought duration distribution is scale free.

This is the rain-equivalent of the Omori law for earthquakes.

Rain is “Earthquake in the Sky”.



Experimental setup Complexity: Rice-pile experiment

L

• Reaches statistically stationary state where 〈in¤ux〉 = 〈out¤ux〉.
• Avalanches dissipate energy.



Statistically stationary states Complexity: Rice-pile experiment



Avalanche size E Complexity: Rice-pile experiment

L = 33 L = 33

E = 294 E = 2868

Energy dissipated by avalanche, E, measured in unit of mgδ = 1.54µJ .

Focus on avalanche-size probability density, P (E;L) dE, in system of size L.



Avalanche-size probability Complexity: Rice-pile experiment
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Rescaled avalanche sizes, E/Emax

as function of number of additions.

Avalanche-size probability densities:

P (E;L) ∝ E−τE for E À 1. τE ≈ 2



Conclusion Complexity: Earthquakes, rainfall, and avalanches

System Crust of Earth Atmosphere Granular pile

Energy source Convection Sun Adding grains

Energy storage Tension Vapour Potential

Threshold Friction Saturation Friction

Relaxation Earthquake Rain event Avalanche

Common basis:

• Slowly driven non-equilibrium systems.

• Threshold dynamics.

• Relaxation event dissipates energy.

• Reaches statistically stationary state where 〈in¤ux〉 = 〈out¤ux〉.
• Relaxation events of all sizes up to a system dependent cutoff.



De£nition Complexity: Oslo rice-pile model

Lattice with L sites, vertical wall at left boundary and open at right boundary.

• The height, hi, is the number of grains at column i, with hL+1 = 0.

• The local slopes zi = hi − hi+1, i = 1, . . . , L.

1 2 L 1 2 L 1 2 L

V

Train model of earthquakes.



De£nition Complexity: Oslo rice-pile model

The algorithm for the Oslo rice-pile model:

1. Initialise the critical slopes zci ∈ {1, 2} and place the system in an

arbitrary metastable state with zi ≤ zci for all i.

2. Add a grain at site i = 1: z1 → z1 + 1.

3. If zi > zci , the site relaxes and

zi → zi − 2

zi±1 → zi±1 + 1.

The critical slope zci is chosen randomly zci ∈ {1, 2}
A new metastable state is reached when zi ≤ zci for all i.

4. Proceed to 2 and reiterate.



Avalanche-size probability Complexity: Oslo rice-pile model
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Data collapse reveals scaling function G Complexity: Oslo rice-pile model
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sτsP (s;L) ∝ G(s/LD).
Data collapse obtained using

exponents τs = 1.55, D = 2.25.



Conclusion Complexity: Oslo rice-pile model

• The susceptibility is the average avalanche size: 〈s〉 = L.

• The slowly driven pile organises itself, without any external £ne-tuning of

control parameters, into a highly susceptible state where the susceptibility

diverges with system size.

• The Oslo rice-pile model displays self-organised criticality.

• The Oslo model is the “Ising Model” for self-organised criticality.
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