Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet.

How: Study the simplest possible model of a ferromagnet containing the essential physics: the Ising model.

Objective: Gain qualitative understanding of the physics governing the phenomena and reveal possible universal behaviour.

Collection of interacting spins $s_i = \pm 1, i = 1, 2, ..., N$ placed on a regular lattice of N sites \mathbf{r}_i .

 $E_{\{s_i\}} = \text{spin-spin interactions} + \text{spin-external field interactions}$

$$= -J \sum_{\langle ij \rangle} s_i s_j - H \sum_{i=1}^N s_i$$
 Ising model.

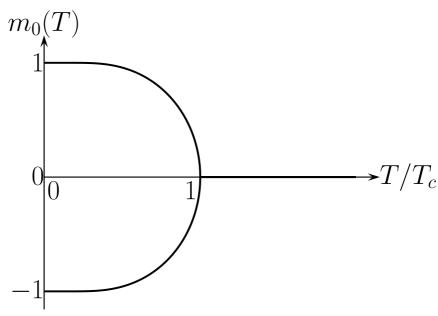
Order parameter: The average magnetisation per spin

$$m(T,H) = \sum_{\{s_i\}} p_{\{s_i\}} m_{\{s_i\}} = \frac{1}{Z} \sum_{\{s_i\}} \exp(-\beta E_{\{s_i\}}) m_{\{s_i\}},$$

with $m_{\{s_i\}} = \frac{1}{N} \sum_{i=1}^{N} s_i$ and the partition function

$$Z = \sum_{\{s_i\}} \exp(-\beta E_{\{s_i\}}).$$

The magnetisation in zero external field $m_0(T) = \lim_{H\to 0^{\pm}} m(T, H)$ for the Ising model in $d \ge 2$.



Objective: Gain qualitative understanding of the phase transition in the Ising model: N lattice spins $s_i = \pm 1$ with positive nearest-neighbour interaction J placed in an external field H,

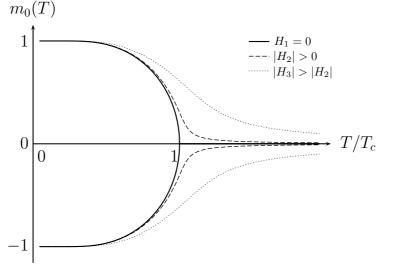
$$E_{\{s_i\}} = -J\sum_{\langle ij\rangle} s_i s_j - H\sum_{i=1}^N s_i.$$

In equilibrium, the spin system will minimise the **free energy**

$$F = \langle E \rangle - TS.$$

Assume zero external field H = 0. The order parameter is the average magnetisation per spin $m_0(T) = \lim_{H \to 0^{\pm}} m(T, H)$.

- When $J/(k_BT) \ll 1$, the free energy is minimised by maximising the entropy. Spins are randomly orientated, $m_0(T) = 0$.
- When $J/(k_B T) \gg 1$, the free energy is minimised by minimising the energy. Spins are aligning, $m_0(T) \neq 0$.



The correlation length $\xi(T, H)$ sets the scale of typical largest fluctuations away from the microstates with (a) randomly orientated spins when $T > T_c$ (b) fully aligned spins when $T < T_c$.

- Trivially self-similar states with $\xi(T, 0) = 0$ at $T = \infty$ and T = 0.
- Non-trivially self-similar states with $\xi(T_c, 0) = \infty$ at $T = T_c$.

Ising model in d = 1: Interacting spins $s_i = \pm 1$ with pbc.

$$E_{\{s_i\}} = -J \sum_{i=1}^{N} s_i s_{i+1} - H \sum_{i=1}^{N} s_i$$

$$Z = \sum_{\{s_i\}} e^{\beta [J \sum_{i=1}^{N} s_i s_{i+1} + \frac{H}{2} \sum_{i=1}^{N} (s_i + s_{i+1})]}$$

$$= \sum_{\{s_i\}} T_{s_1 s_2} T_{s_2 s_3} T_{s_3 s_4} T_{s_4 s_5} \dots T_{s_{N-1} s_N} T_{s_N s_1}$$

$$= \lambda_+^N + \lambda_-^N \quad \text{Eigenvalues of } \mathbf{T}, \text{ i.e., } |\mathbf{T} - \lambda \mathbf{I}| = 0$$

$$F = -k_b T \ln Z \rightarrow -Nk_b T \ln \lambda_+ \text{ for } N \rightarrow \infty$$

$$m(T, H) = -\left(\frac{\partial f}{\partial H}\right)_T = \frac{\sinh(\beta H)}{\sqrt{\sinh^2(\beta H) + e^{-4J\beta}}}.$$

$$(H) = \int_{-1}^{0} \int_{-1}^{0} \int_{-1}^{-\frac{T_4 > T_3}{1 - T_3 > T_2}} \int_{-\frac{T_4 > T_4}{1 - T_3 > T_3}} \int_{-\frac{T_4 > T_4}{1 - T_3 > T_2}} \int_{-\frac{T_4 > T_5}{1 - T_3 > T_2}} \int_{-\frac{T_4 > T_5}{1 - T_3 > T_2}} \int_{-\frac{T_4 > T_5}{1 - T_4 > T_5}} \int_{-\frac{T_4 > T_5}{1 - T_3 > T_2}} \int_{-\frac{T_4 > T_5}{1 - T_3 > T_3}} \int_{-\frac{T_4 > T_5}{1 - T_4 > T_5}} \int_{-\frac{T_4 > T_5}{1 - T_4 > T_5}} \int_{-\frac{T_4 > T_5}{1 - T_5$$

H

Ising model in d = 1: Interacting spins $s_i = \pm 1$ with pbc.

$$E = -J\sum_{i=1}^{N} s_i s_{i+1} - H\sum_{i=1}^{N} s_i$$

The spin-spin correlation function

$$g(\mathbf{r}_i, \mathbf{r}_j) = \langle (s_i - \langle s_i \rangle) (s_j - \langle s_j \rangle) \rangle$$

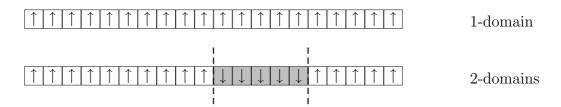
= $\langle s_i s_j \rangle - \langle s_i \rangle \langle s_j \rangle$
= $\begin{cases} 0 & \text{for } T = 0 \\ \langle s_i s_{i+r} \rangle & \text{for } T > 0 \end{cases}$
= $\begin{cases} 0 & \text{for } T = 0 \\ \exp(-r/\xi) & \text{for } T > 0 \end{cases}$

with the correlation length

$$\xi = -\frac{1}{\ln[\tanh(\beta J)]} \to \begin{cases} 0 & \text{for } T \to \infty\\ \frac{1}{2}\exp(2\beta J) & \text{for } T \to 0. \end{cases}$$

The correlation function is related to the susceptibility per spin

$$\sum_{\mathbf{r}_j} g(\mathbf{r}_i, \mathbf{r}_j) = k_B T \chi = \frac{\langle M^2 \rangle - \langle M \rangle^2}{N}.$$



The free energy $F = \langle E \rangle - TS = \langle E \rangle - k_B T \ln \Omega$ so

$$F_{2-\text{domains}} - F_{1-\text{domain}} = 4J - k_B T \ln N(N-1).$$

A single domain of aligned spins is unstable against thermal fluctuations for finite T for large enough N since $F_{2-\text{domains}} < F_{1-\text{domain}}$. In the d = 1 Ising model, $T_c = 0$.

Ising Model – Summary of L16

Mean-field approach ignores correlations between spins.

$$E_{\{s_i\}} = NJzm^2/2 - (Jzm + H)\sum_{i=1}^N s_i.$$

Model of N noninteracting spins in an effective field Jzm + H, where each spin feels an average internal field Jzm from the z nearest neighbour spins in addition to the external field H.

The partition function is readily calculated analytically

$$Z = \exp(-\beta N J z m^2/2) \left[2\cosh(\beta J z m + \beta H)\right]^N$$

The free energy per spin is a function of T and H,

$$f = Jzm^2/2 - k_BT \ln \left[2\cosh(\beta Jzm + \beta H)\right].$$

The magnetisation per spin minimises the free energy and satisfies

$$m = \tanh(\beta J z m + \beta H) \qquad (\star).$$

Letting $T_c = Jz/k_B$, Equation (*) in zero external field reads

$$m_0(T) = \tanh(\frac{T_c}{T}m_0(T))$$
 (**).

For $T \geq T_c$ the solution $m_O(T) = 0$ is unique and stable. For $T < T_c$ the trivial solution becomes unstable but two new stable non-zero solutions appear for the first time, therefore

$$m_0(T) = \begin{cases} 0 & \text{for } T \ge T_c \\ \pm \sqrt{3/T_c} (T_c - T)^\beta & \text{for } T \to T_c^-. \end{cases}$$

The susceptibility per spin

$$\chi(T,0) = \left(\frac{\partial m}{\partial H}\right)_T|_{H=0} = \Gamma_{\pm} |T - T_c|^{-\gamma^{\pm}} \quad \text{for } T \to T_c^{\pm}$$

with exponents $\gamma^{\pm} = 1$ and amplitudes $\Gamma_{+} = 1/k_{B}, \Gamma_{-} = 1/(2k_{B}).$

The magnetisation per spin at $T = T_c$

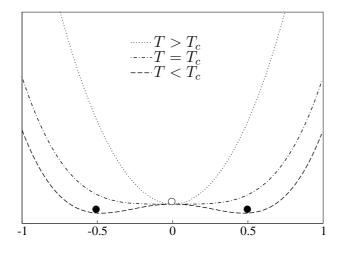
$$m(T_c, H) \propto \operatorname{sign}(H)|H|^{1/\delta} \text{ for } |H| \to 0$$

with ciritcal exponent $\delta = 3$.

Landau theory for the Ising model. Expanding the free energy per spin in powers of the order parameter m:

$$f = f_0 - Hm + a_2(T - T_c)m^2 + a_4m^4 \quad a_2, a_4 > 0.$$

The magnetisation m is determined by minimising the free energy, so it must



satisfy the equation $\left(\frac{\partial f}{\partial m}\right)_{T,H} = 0$ implying

$$-H + 2a_2(T - T_c)m + 4a_4m^3 = 0.$$

The magnetisation in zero external field $(\beta = 1/2)$

$$m_0(T) = \begin{cases} 0 & \text{for } T \ge T_c \\ \pm \sqrt{\frac{a_2}{2a_4}(T_c - T)} & \text{for } T \to T_c^-. \end{cases}$$

The susceptibility per spin in zero external field $(\gamma^{\pm} = 1)$

$$\chi(T,0) = \left(\frac{\partial m}{\partial H}\right)_T \Big|_{H=0} = \begin{cases} \frac{1}{k_B}(T-T_c)^{-1} & \text{for } T \to T_c^+ \\ \frac{1}{2k_B}(T_c-T)^{-1} & \text{for } T \to T_c^- \end{cases}$$

The magnetisation at $T = T_c$ in small external fields ($\delta = 3$)

$$m(T_c, H) \propto \operatorname{sign}(H) |H|^{1/\delta}$$
 for $T = T_c$ and $|H| \to 0$.

The specific heat capacity in zero external field $(\alpha^{\pm} = 0)$

$$c(T,0) = \left(\frac{\partial \epsilon}{\partial T}\right)_H \Big|_{H=0} = \begin{cases} 0 & \text{for } T \to T_c^+ \\ \frac{3}{2}k_B & \text{for } T \to T_c^- \end{cases}$$

Widom scaling ansatz for the magnetisation per spin

$$m(t,h) = |t|^{\beta} \mathcal{M}_{\pm}(h/|t|^{\Delta}) \text{ for } t \to 0^{\pm} \text{ and } |h| \to 0,$$

where β and Δ (the so called gap exponent) are universal critical exponents and \mathcal{M}_{\pm} universal scaling functions that must satisfy

$$m(t,h) = -m(t,-h) \qquad \Leftrightarrow \mathcal{M}_{\pm}(x) = -\mathcal{M}_{\pm}(-x)$$

$$m(t,h) = \pm |t|^{\beta} \quad \text{for } t \to 0^{-} \Leftrightarrow \mathcal{M}_{-}(0) = \pm \text{non-zero constant}$$

$$m(t,h) = 0 \quad \text{for } t > 0 \qquad \Leftrightarrow \mathcal{M}_{+}(0) = 0$$

$$m(0,h) \propto \text{sign}(h)|h|^{1/\delta} \qquad \Leftrightarrow M_{\pm}(x) \propto \text{sign}(x)|x|^{1/\delta} \quad \text{for } x \to \pm \infty, \Delta = \beta \delta$$

The susceptibility per spin

$$\chi(t,h) = |t|^{\beta - \Delta} \mathcal{M}'_{\pm}(h/|t|^{\Delta})$$

so taking the limit $h \to 0$ we find

$$\Delta = \beta + \gamma$$
 and $\mathcal{M}'_{\pm}(0) = \text{non-zero constants}$

Widom scaling ansatz for the singular part of the free energy per spin

$$f_s(t,h) = |t|^{2-\alpha} \mathcal{F}_{\pm} \left(h/|t|^{\Delta} \right) \quad \text{for } t \to 0^{\pm} \text{ and } |h| \to 0.$$

and by taking derivatives with respect to the external field we find

$$m(t,h) \propto |t|^{2-\alpha-\Delta} \mathcal{F}'_{\pm} \left(h/|t|^{\Delta} \right) \quad \text{for } t \to 0^{\pm} \text{ and } |h| \to 0$$

$$\chi(t,h) \propto |t|^{2-\alpha-2\Delta} \mathcal{F}''_{\pm} \left(h/|t|^{\Delta} \right) \quad \text{for } t \to 0^{\pm} \text{ and } |h| \to 0.$$

The Widom scaling ansatz for the free energy per spin and the correlation function (see Exercise 2.5) implies scaling relations

$\beta\delta=\beta+\gamma$	Widom scaling law
$\alpha + 2\beta + \gamma = 2$	Rushbrook scaling law
$d\nu = 2 - \alpha$	Josephson scaling law
$\gamma=\nu(2-\eta)$	Fisher scaling law.

The exponents take the same value for $t \to 0^{\pm}$. There are only two independent critical exponents.

Defining the dimensionless reduced temperature $t = (T - T_c)/T_c$ and external field $h = H/k_BT$, the Widom scaling ansatz for the free energy per spin and the correlation function when $t \to 0^{\pm}$, $|h| \to 0$ are

$$f_s(t,h) = |t|^{2-\alpha} \mathcal{F}_{\pm} \left(h/|t|^{\Delta} \right)$$
(1)

$$g(\mathbf{r}, t, h) = |\mathbf{r}|^{-(d-2+\eta)} \mathcal{G}_{\pm} \left(|\mathbf{r}|/|t|^{-\nu}, h/|t|^{\Delta} \right).$$
(2)

The origin of scaling is intimately related to the existence of only one relevant length scale ξ which diverges at the critical point $(T_c, 0)$. Spins are correlated over scales up to ξ leading Kadanoff to introduce the idea of real-space transformation.

- Divide the system into blocks I each with b^d spins.
- Coarse-grain system by replacing all spins in block I with a block spin S_I .
- Rescale all length scales by factor b.

The renormalisation implies $N' = b^{-d}N, t' = b^{y_t}t, h' = b^{y_h}h$ and

$$Z(N,t,h) = \sum_{\{s_I\}} \sum_{\substack{\{s_i\} \text{ consistent}\\ \text{with } \{s_I\}}} \exp(-\beta E_{\{s_I\}}) = \sum_{\{s_I\}} \exp(-\beta E'_{\{s_I\}}) = Z(N',t',h')$$

The partition function is invariant but the free energy per spin satisfies

$$f(t,h) = b^{-d} f(t',h') = b^{-d} f(b^{y_t}t,b^{y_h}h)$$
 for all $b < \xi$

which by letting $b = |t|^{-1/y_t}$ is equivalent with Equation (1). Similarly, one can show the correlation function satisfies

$$g(|\mathbf{r}|, t, h) = |b|^{-2\beta/\nu} g(|\mathbf{r}'|, t', h') = |b|^{-2\beta/\nu} g(|\mathbf{r}|/b, b^{y_t}t, b^{y_h}h) \quad \text{for all } b < \xi$$

which by letting $b = |t|^{-1/y_t}$ is equivalent with Equation (2).

Kadanoff block spin real-space renormalisation transformation gives heuristic explanation for the Widom scaling ansatz for the free energy and the correlation function.

Renormalisation in d = 1. The reduced energy for the Ising model

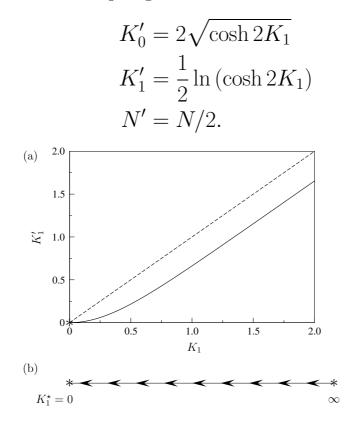
$$\beta E_{\{s_i\}} = -\frac{J}{k_B T} \sum_{\langle ij \rangle} s_i s_j - \frac{H}{k_B T} \sum_{i=1}^N s_i = -K_1 \sum_{\langle ij \rangle} s_i s_j - h \sum_{i=1}^N s_i.$$

The partition function (in zero external field, h = 0) in d = 1:

$$Z(K_{1}, N) = \sum_{\langle ij \rangle} \exp\left(K_{1} \sum_{i=1}^{N} s_{i} s_{i+1}\right)$$

= $\sum_{\text{odd spins}} \sum_{\text{even spins}} \exp\left(K_{1}[s_{1}s_{2} + s_{2}s_{3}]\right) \cdots \exp\left(K_{1}[s_{N-1}s_{N} + s_{N}s_{1}]\right)$
= $\sum_{\text{odd spins}} \exp\left(K'_{0} + K'_{1}s_{1}s_{3}\right) \cdots \exp\left(K'_{0} + K'_{1}s_{N-1}s_{1}\right)$
= $\exp(N'K'_{0})Z(K'_{1}, N'),$

where the renormalised coupling constants and number of spins



In the renormalised lattice, nn spins couple with strength $K'_1 < K_1$. For $0 < K_1 < \infty$, the renormalisation induces a flow from the unstable fixed point $K_1^* = \infty$ (spins fully aligned) towards the stable fixed point $K_1^* = 0$ (spins noninteracting): No phase transition in d = 1 for $(t, h) \neq (0, 0)$.