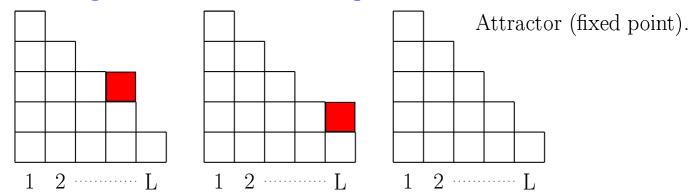
Bak-Tang-Wiesenfeld d = 1 sandpile model.



Dynamical variable: local slopes $z_i = h_i - h_{i+1}$. Dynamics:

- 1. Initialisation: Place pile in stable configuration $\{z_i\}_{i=1}^L$, with $z_i \leq z^{\text{th}}$.
- 2. Drive: Add a grain at site i: $z_i \rightarrow z_i + 1$ $z_{i-1} \rightarrow z_{i-1} 1$
- 3. If $z_i > z^{\text{th}}$, the site topples (relaxes) and $z_i \to z_i 2$ $z_{i\pm 1} \to z_{i\pm 1} + 1$.

A new stable configuration is reached when $z_i \leq z^{\text{th}}$ for all i.

4. Proceed to 2 and reiterate.

A stable configuration has $z_i \leq z^{\text{th}}$ for all i. Adding a grain to a stable configuration \mathcal{S}_j , it evolves into a new stable configuration $\mathcal{S}_j \mapsto \mathcal{S}_{j+1}$. Stable configurations are either transient configurations \mathcal{T} or recurrent configurations \mathcal{R} . Symbolically,

$$\mathcal{T}_1 \mapsto \mathcal{T}_2 \mapsto \cdots \mapsto \mathcal{T}_n \mapsto \underbrace{\mathcal{R}_1 \mapsto \cdots \mapsto \mathcal{R}_{j-1} \mapsto \mathcal{R}_j \mapsto \mathcal{R}_{j+1} \mapsto \cdots}_{attractor}$$

Size s of avalanches = total no. of relaxations in the transition $S_j \mapsto S_{j+1}$. When the d = 1 BTW model is in the attractor, the avalanche size probability:

$$P(s,L) = \begin{cases} 1/L & \text{if } 1 \le s \le L \\ 0 & \text{otherwise} \end{cases} = s^{-1} \frac{s}{L} \Theta(1 - \frac{s}{L}) = s^{-1} \mathcal{G}_{1d}^{BTW}(s/L)$$

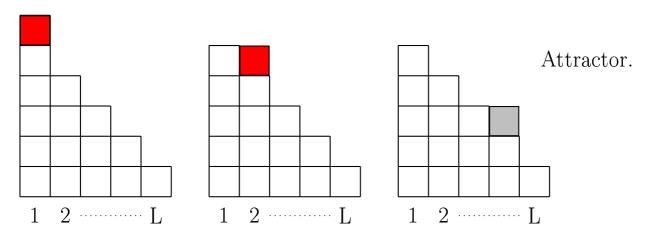
Generally, we would expect the avalanche size probability

$$P(s, L) \propto s^{-\tau} \mathcal{G}(s/L^D)$$
 for $s \gg 1, L \gg 1$,

where τ , D are critical expoents and \mathcal{G} a scaling function where

$$\mathcal{G}(x) = \begin{cases} \mathcal{G}(0) + \mathcal{G}'(0)x + \cdots & \text{for } x \ll 1\\ \text{decays rapidly} & \text{for } x \gg 1. \end{cases}$$

Oslo ricepile model in d=1.



Dynamical variable: local slope $z_i = h_i - h_{i+1}$. Threshold slope $z_i^{\text{th}} \in \{1, 2\}$.

- 1. Initialisation: Place pile in stable configuration $\{z_i\}_{i=1}^L$, with $z_i \leq z_i^{\text{th}}$.
- 2. Drive: Add a grain at site i = 1: $z_1 \rightarrow z_1 + 1$.
- 3. Relaxation: If $z_i > z_i^{\text{th}}$, the site topples (relaxes) and $z_i \to z_i 2$ $z_{i\pm 1} \to z_{i\pm 1} + 1$.

Threshold z_i^{th} is chosen anew. A new stable configuration is reached when $z_i \leq z_i^{\text{th}}$ for all i.

4. Proceed to 2 and reiterate.

$$\mathcal{T}_1 \mapsto \mathcal{T}_2 \mapsto \cdots \mapsto \mathcal{T}_n \mapsto \underbrace{\mathcal{R}_1 \mapsto \cdots \mapsto \mathcal{R}_{j-1} \mapsto \mathcal{R}_j \mapsto \mathcal{R}_{j+1} \mapsto \cdots}_{attractor}$$

In the attractor, the avalanche size probability

$$P(s,L) = s^{-\tau} \mathcal{G}_{1d}^{Oslo}(s/L^D)$$
 for $s \gg 1, L \gg 1$.

where τ , D are critical exponents and \mathcal{G}_{1d}^{Oslo} a scaling function.

The kth moment of the avalanche size density

$$\langle s^k \rangle = \sum_{s=1}^{\infty} s^k P(s, L) \approx L^{D(1+k-\tau)} \int_{1/L^D}^{\infty} \mathcal{G}(\tilde{s}) \, d\tilde{s} \propto L^{D(1+k-\tau)} \quad \text{for } L \to \infty.$$

For the Oslo model, the average avalanche size (susceptibility) $\langle s \rangle = L$, so

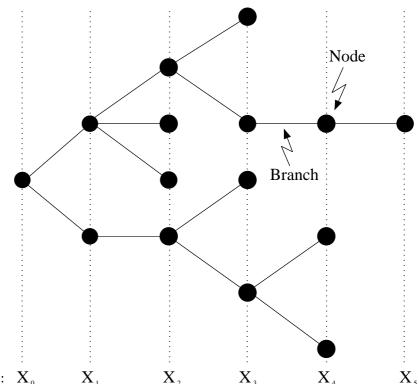
$$D(2-\tau)=1.$$

Numerical results

$$D = 2.25(1) \stackrel{?}{=} \frac{9}{4}$$
 and $\tau = 1.55(1) \stackrel{?}{=} \frac{14}{9}$.

Avalanche dynamics.

Branching process (BP):



 X_j = is the number of nodes in generation j: X_0 X_1 X_2 X_3 X_4 Probability p_b that a node has b branches. The branching ratio

$$\langle b \rangle = \sum_{b=0}^{\infty} b p_b = \begin{cases} < 1 \text{ sub-critical} \\ = 1 \text{ critical} \\ > 1 \text{ super-critical.} \end{cases}$$

The BP process displays a phase transition at $\langle b \rangle = 1$. Total number of nodes in a tree $s = \sum_{j=0}^{\infty} X_j$ – avalanche size. For an uncorrelated BP

$$P(s, \langle b \rangle) \propto s^{-\tau} \exp(-s/s_{\xi})$$
 for $s \gg 1$
 $s_{\xi} \propto |1 - \langle b \rangle|^{-1/\sigma}$ for $\langle b \rangle \to 1$

with $\tau = 3/2$, $\sigma = 1/2$, implying an average tree (avalanche) size

$$\langle s \rangle \propto s_{\xi}^{2-\tau} \propto |1 - \langle b \rangle|^{-(2-\tau)/\sigma} \Leftrightarrow \langle b \rangle = 1 - \frac{1}{\langle s \rangle}.$$

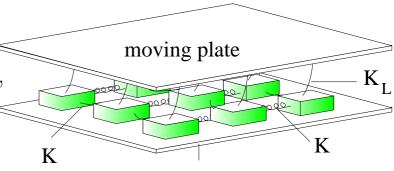
Avalanches in SOC systems can be view as a correlated branching process. A given avalanche k has branching ratio $b_k = (s_k - 1)/s_k$ so

$$\langle b \rangle = \frac{\sum_{k} s_{k} b_{k}}{\sum_{k} s_{k}} = 1 - \frac{1}{\langle s \rangle}$$

generalising the result for uncorrelated BP. The SOC systems **self-organise** into states with $\langle b \rangle \to 1$ as $\langle s \rangle \to \infty$. **No fine-tuning** of a control parameter is needed. Nonconservative sample models have $\langle b \rangle < 1$. They are sub-critical.

Burridge-Knopoff spring-block model of fault.

- 1. Random initial condition $\{F_i\}$, with $F_i < F_c = 1$.
- 2. Increase strain uniformly.
- 3. If $F_i \geq F_c$, the block slips and



fixed plate

$$F_{nn} \rightarrow F_{nn} + \alpha F_i, \quad \alpha = \frac{K}{4K + K_L}$$
 $F_i \rightarrow 0$

A new metastable state is reached when $F_i < F_c$ for all i.

4. Proceed to 2 and reiterate.

Dissipation when bulk site slips $\Delta F = F_i^{toppling} - 4\alpha F_i^{toppling} = (1-4\alpha) F_i^{toppling}$.

Independent oscillators.

Conservative model

Critical model for $\alpha_c \leq \alpha \leq \frac{1}{4}$ where $\alpha_c = ?$. Recent results indicate that the density of avalanche sizes

$$P(s,L) \propto s^{-\tau} \mathcal{G}(s/L^D), \quad \tau \approx \begin{cases} 1.25 & \text{for } \alpha = \frac{1}{4} \\ 1.8 & \text{for } \alpha_c \leq \alpha < \frac{1}{4}. \end{cases}$$

Let $\langle F_{max} \rangle = \langle \text{Max} F_i \rangle$ when system is in a metastable state. The $\langle \text{Influx} \rangle = \langle \text{Outflux} \rangle$ implies $L^2(F_c - \langle F_{max} \rangle) = \langle s \rangle (1 - 4\alpha) \langle F_i^{toppling} \rangle$ that is

$$\langle s \rangle = \frac{L^2(F_c - \langle F_{max} \rangle)}{(1 - 4\alpha)\langle F_i^{toppling} \rangle} \to \infty \quad \text{for } L \to \infty$$

if

$$\alpha \to 1/4$$
 or $(F_c - \langle F_m ax \rangle) \propto L^{-q}, q < 2.$

The behaviour of the Olami-Feder-Christensen model is still under scrutiny.