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We present a simple mean-field model for the sandpile model introduced by Bak, Tang, and Wiesen-
feld (BTW) [Phys. Rev. Lett. 59, 381 (1987)]. In the mean-field model we are able to pinpoint the process
of self-organization as well as the emerging scale invariance displayed as a power-law distribution of
avalanche sizes. We discuss the BTW sandpile model on a lattice and show that the dynamical behavior
can be expressed as a transport problem. This implies that the average avalanche size scales with the
system size, and additional heuristic arguments related to the transport properties more than indicate
the origin of the power-law behavior. We review recent work in which scaling relations and additional
constraints between the various critical exponents are addressed. We demonstrate that some of the pro-
posed relations are inconsistent. We present a coherent “theory” in which the scaling relations along
with additional constraints leave only one exponent unknown.

PACS number(s): 05.40.-j, 05.70.Jk, 05.70.Ln

I. INTRODUCTION

A few years ago Bak, Tang, and Wiesenfeld (BTW) [1]
suggested that the frequent occurrence of fractal struc-
tures [2,3] is the generic spatial characteristic of a
dynamical critical state into which dynamical systems
with many spatial degrees of freedom evolve naturally.
Unlike phase transitions in an equilibrium system, a
driven dissipative dynamical many-body system reaches
the critical state without the necd to adjust the system
parameters, i.e., the critical state studied by BTW is an
attractor of the dynamics. Therefore, the critical state is
usually described as being self-organized.

This idea assumes increasing importance in the new era
of physics, where the focus is on “developing complexity
out of simplicity” in contrast with the attempt *“to reduce
complexity to simplicity” to use the words of Anderson
[4]. The fractal growth phenomenon such as diffusion-
limited aggregation (in which particles perform a random
walk until they reach the growing cluster where they
come to rest) is an example in which simple local rules
lead to a great variety of physical phenomena including
scale invariance [3,5]. And indeed, the relationship be-
tween the simple underlying rules governing the dynam-
ics of extended physical systems and the emerging com-
plex structures is an intriguing problem [6].

Often a sandpile is used as a paradigm of an extended
many-body system displaying self-organized criticality.
As an example, take a square table and a large bucket of
sand. We begin sprinkling grains of sand on the table,
one grain at a time. We drop the grain on a randomly
chosen place on the table and repeat the act when all
motion has terminated. In the beginning the grains just
fall on the table in no particular pattern. After a while,
small local avalanches are created in order to decrease
the local slopes whenever they become too steep, and
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eventually we end up with only one big sandpile. At
some point (the transient time) this pile ceases to grow.
The (global) average slope has reached a steady state cor-
responding to the angle of repose which the sandpile can-
not exceed no matter how much sand we add. The pile
has reached a statistically stationary state and additional
grains of sand will ultimately fall off the pile. The
avalanches induce the transport of sand which is clearly
necessary in order to relax the sandpile.

In order to examine the phenomenon of self-organized
criticality, BTW introduced a cellular automaton which
involves discrete space coordinates [1]. The dynamical
rules in the BTW model—also known as the sandpile
model—at least intuitively resemble the dynamics of a
sandpile: A signal is transmitted from a local site to its
nearest neighbors the moment a dynamical integer vari-
able (local slope) exceeds a critical value (the angle of re-
pose).

By simulating this model BTW showed that the system
does indeed drive itself to a statistically stationary state,
characterized by the distributions of avalanche lifetimes
and avalanche sizes which exhibit power-law behavior
limited only by the size of the system. Since the system
evolves into a stationary state without any characteristic
time or length scales, it is in this sense critical. The ge-
neric universality of the model stems from the fact that
the systems reach the critical attractor without the need
to adjust the system parameters. Also, the systems adjust
themselves to different environments. In the language of
sandpiles, it does not affect the criticality of the final sta-
tionary state if we use wet sand instead of dry sand [1].

We stress that the complexity of these models is not a
result of complex local rules; the complexity emerges as a
result of the continued local interaction between all parts
in the extended system. Such examples of dynamical sys-
tems which generate complex fractal structures might
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provide the explanation of the common appearance of
fractal structures in nature. Note that the idea of self-
organized criticality (SOC) refers to an extended system
with many degrees of freedom. It complements in some
sense the concept of “chaos” in which simple systems
with a few degrees of freedom display quite complex
behavior.

The tale of the sandpile provides an intuitive picture of
the basic concepts of self-organized criticality. Several
authors have addressed the interesting question as to
whether or not real sandpiles display SOC [7-11]. Since
the purpose of the present paper is not to discuss the
behavior of real sandpiles in detail but rather the
behavior of the cellular-automaton model associated with
this, we only give a brief summary of the experiments on
real sandpiles and refer the reader to the references
herein.

Two distinct types of experiments have been per-
formed: (a) rotating at a low constant velocity a semi-
cylindrical drum partially filled with sand [7-9], and (b)
dropping at a low rate individual grains on a conical
sandpile resting on a circular platform [10,11].

Using method (a) Jaeger, Liu, and Nagel {7,8] placed a
pair of capacitor plates below the rim of the rotating
drum in order to monitor the flow of sand over the rim.
They found only large avalanches occurring (nearly)
periodic in time. It is argued that when the “sandpile”
reaches an upper maximum angle of stability 8,, a large
avalanche occurs and the slope of the pile is reduced to
6,, the angle of repose. When the system once again
reaches the maximum angle of stability 6,, a new large
avalanche is initiated. The existence of 6,, > 6, implies
hysteresis associated with a first-order transition: When
0, <6<40,, the sandpile can either be stationary (building
up) or flowing (relaxing). No indication of SOC behavior
(second-order transition) was observed.

Experiments of type (b) were performed by Held et al.
[10] and Rosendahl, Vekic¢, and Kelley [11], who used a
balance to measure the mass fluctuations in the sandpile,
i.e., the distribution in the avalanche sizes of the flow of
sand over the rim. Held et al. observed that the distribu-
tion of sand flowing over the rim did obey a power law
showing finite-size scaling, but only when the pile was
sufficiently small. In larger sandpiles the behavior was
similar to that reported by Jaeger, Liu, and Nagel, i.e.,
relaxational oscillations. It was suggested that SOC
might be interpreted as a finite-size effect, since only
small sandpiles display SOC in the experiment by Held
et al. An explanation for the crossover from the ap-
parent SOC behavior in small sandpiles to the oscillatory
behavior in large sandpiles was offered by Liu, Jaeger,
and Nagel [12]: If the length of the sandpile L is too
small, then the addition of a single grain of sand of diam-
eter d could bring the angle of the sandpile from 6, to a
value 0>40,, the condition being that
L <d/(8,,—06,)=30d. '

Contrary to the results of Held et al., Rosendahl, Vek-
i¢, and Kelley [11] found a persistent power-law behavior
of the small avalanches over the rim in the sandpile, in-
dependent of system size: As the system increases in size,
large avalanches appear and they eventually dominate the
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mass flow over the rim, but the power-law distribution of
small avalanches persists. However, the data presented
in Ref. [11] indicate that the cutoff in the power-law dis-
tribution of small avalanches does not scale with system
size.

In an experiment of type (a) by Bretz et al. [9], the
avalanches that occur down the slope are studied. They
also find large sliding events occurring regularly, but in
addition they find smaller avalanches with a power-law
distribution of sizes. However, no finite-size scaling anal-
yses were done, and it would be very interesting to see
whether the power-law distribution of avalanche sizes
scales with system size, since this is a unique fingerprint
of a system displaying SOC.

There is a striking discrepancy between the experi-
ments in Refs. [7,8,10,11] and the sandpile cellular au-
tomaton. When measuring the flow of sand over the rim,
the internal avalanches are neglected [13,10]. The latter
experiment [9] is the only experiment where the
avalanches down the slope are studied. This is the
relevant measure if we want to make a close connection
to the sandpile cellular-automaton model. Also, the ex-
periments of type (a) are essentially one dimensional
while the model sandpile is two dimensional. An addi-
tional complication, which is not taken into account in
the original sandpile cellular-automaton model, is the
question of inertia effects. Including the inertia effects
Prado and Olami [14] have reproduced the experimental
results of Refs. [10,11] for the distribution of flow over
the rim.

The study of the SOC systems has to a great extent
been based on simulations that use cellular-automata
models. The majority of these simulations have been lim-
ited to comservative models, i.e., models where the simple
dynamical rules conserve the dynamical variable. It has
been suggested that the necessary (and sufficient) condi-
tion for SOC is indeed the conservation law [15,16], but
recently a class of nonconservative models was shown to
display self-organized criticality as well [17].

Section 1I is devoted to a discussion of sandpile models
in which we neglect the spatial correlations. The models,
known as “random-neighbor models,” have no underly-
ing spatial structure defining the neighborhood relations.
We show that the random-neighbor model organizes into
a statistically stationary state where the average rate of
flow of sand into the system equals the average rate of
flow of sand out of the system. Given the amount of dissi-
pation (for a precise definition see Sec. II) we can easily
calculate the average avalanche size. Furthermore, we
show that the random-neighbor model is identical to a
branching process where an analytical expression for the
avalanche size distribution is known. According to this
result, only conservative systems are able to exhibit criti-
cal behavior. This highlights the importance of correla-
tions for the discovered existence of critical nonconserva-
tive models [17].

In Sec. III we define the sandpile models with an un-
derlying lattice, i.e., we introduce spatial correlations.
These systems also reach a statistically stationary state
where the average rate of flow of sand into the systems
equals the average rate of flow of sand out of the systems.
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Thus the average avalanche size has to diverge in the
thermodynamic limit where the system size goes to
infinity. This is compatible with a power-law distribution
of avalanche sizes, the existence of which is further sup-
ported by additional arguments related to the transport
properties of the system.

We discuss the host of critical exponents related to the
sandpile model. We review the scaling relations and ad-
ditional constraints addressed by several authors [18-20].
We find that the proposed values for the critical ex-
ponents are not self-consistent [18,19] or, in the case of
Ref. [20], not compatible with measurements (the reason
being that the value of one of the critical exponents is
based on a wrong assertion). We present a coherent set of
equations leaving only one critical exponent to be deter-
mined. We estimate one exponent from simulations of
the model. Determining the other exponents from the
self-consistent set of equations we find excellent agree-
ment between the measured and conjectured values.

II. SANDPILE MODELS
WITHOUT SPATIAL STRUCTURE

A. Definition of the model

Given N sites numbered i =1, ..., N, an integer vari-
able z; is associated with every site {. All sites are capable
of storing z,, — 1 units. The system is perturbed by adding
one unit at a time to a randomly chosen site, that is,
z;—z;+1. We stop perturbing the system if, at some
point, z; Zz,,: the site topples, i.e., its content is distribut-
ed to “neighboring sites” or simply dissipated. To be
more precise, if z; exceeds the threshold value zy,, then
the site relaxes z;—z;—z,;, and we add one unit to oz
randomly chosen neighbors

zj —z; T1, k=1,...,0zy . (1)
The parameter a determines the number of random
neighbors, its form being a=I[/zy, where
IE{O, v e ’zth—l}'

We can choose new random neighbors every time site /
topples, in which case we refer to the model as an an-
nealed random-neighbor model. The random choice of
neighbors can also remain fixed during the simulations,
which is then called a random-neighbor model with
quenched randomness. In the following we will restrict
ourselves to the annealed model tecause it allows the re-
sult to be derived very easily.

The dynamics of the model are defined as follows: We
take a random initial configuration {z;}];, z; <z, Vi.
We add one unit at a time to a randomly chosen site i,
ie., z;—z;+1. If z; Zz,;, the system relaxes according to
the rule

Z;—>Z;—Zyp

2)
z; —z; +1, k=1,...,azy .
This may cause one or more of the neighboring sites to
exceed the threshold value, in which case they have to re-
lax simultaneously (i.e., we use a parallel updating of the
lattice) according to Eq. (2), and we say that an avalanche
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propagates in the system. This process continues until
we regain a static state {z;}_,, z; <z Vi. Then we per-
turb the system once again and so on.

B. The statistically stationary state

Let P, be the probability that a given site contains z
units. One toppling can cause 0 to azy, new topplings. It
will cause a neighbor to topple if the neighbor has z,;, —1
units. Since the neighbors are randomly chosen, it will
cause b topplings with the probability

Az,

b

az, —b

(I_Pzth—l) ’

4

Py = .

b=0,...,0z,5 ()

averaging the number of new topplings to

azth
(b)= bp, =azgP, ;- 4)
5=0

If 2 <1 and N— o this model does not form loops (the
probability that a toppling site is chosen as a neighbor by
one of its own neighbors is of the order of 1/N) and the
random-neighbor model is considered a true branching
process. The probability of creating b new branches is
given by Eq. (3), and on the average (b )=aztthth_l

branches are created. Very quickly the system settles
into a statistically stationary state in which
(z)=(1/N)I_,z; fluctuates around a constant value.

Note that when a=1 the random-neighbor model is
not well defined since {z) will continue to grow until
(z)=z,. The following perturbation will initiate an
avalanche which goes on forever. However, the branch-
ing process is mathematically well defined.

It is easily shown that the system reaches an equilibri-
um state, where the rate of flow into a state z equals the
rate of flow out of that same state. During an avalanche
(or perturbation) the rate of flow into the state z is pro-
portional to the probability that a chosen site contains
exactly z —1 units, i.e., P, _;, while the rate of flow out of
the state z is proportional to P, (the constants of propor-
tionality are the same, namely az,, times the total num-
ber of toppling lattice sites at that moment). If P,_,>P,
(P,_,<P,), the rate of flow into the state z is larger
(smaller) than the rate of flow out of the same state, and
P, will increase (decrease) until P, _;=P,. Thus

P,_,=P,, z=1,...,24—1 5)

is an attractor of the system. This is verified by computer
simulations of the annealed random-neighbor model.
Using the renormalization condition 2;‘20 P,=1, we
find that
1
P,=—, z=0,...

> —-1. 6
Zn Zih ( )

We notice that the organization of the system is indepen-
dent of a because the derivation of Eq. (6) does not rely
on the value of a. This separation of the dynamics of the
avalanches from their organization of the medium
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through which they propagate is probably the reason
why it is possible to obtain analytical results. Using Eq.
(4) we find that the average number of new topplings is
determined by the parameter o

(b)=a. ' (7)

C. The avalanche size distribution

The parameter a determines the amount of nonconser-
vation in the system. If & <1 we dissipate z,;, —az, units
in every toppling. In a statistically stationary state we
must dissipate as many units as we put into the system.
Let s denote the size of an avalanche (i.e., the total num-
ber of topplings in an avalanche) and let {s) be the aver-
age size of an avalanche. Then

1
P

zy—1

(s Nzg—azy)= =Zin R ()

since I/qu,—l is the average rate of flow into the system

(the average number of additions before we trigger an
avalanche). Thus the average avalanche size is given by

1 , , .

(y=rlo . e g
1—a

Using the analogy with branching processes we can ex-

press the distribution function of avalanche sizes s analyt-

ically (see, e.g., Ref. [21]),

—2 -3 —

P(s)xs' T exp =5 3 2exp ,

sela)

s (a)oc——l—— e - e T
£ (1_ a)2 ’
where we introduce the power-law exponent 7, and the
cutoff in the cluster size distribution s;. Note that Eq.
(10b), along with the left-hand side of Eq. (10a), implies
that 7,=3. - e

When a=1 the model is conservative with (s)=co
and s,=oo, following that P(s)es /% the system is
critical. In terms of the branching process, the average
number of new topplings {(b)=1, ie., the (critical)
branching process is just barely able to continue. When
a<l the model is  nonconservative  with
(s)=1/(1—a)<w and s;<ow, following that
P(s)cs 2 exp(—s/s,); the system is subcritical; see,
e.g., Ref. [22].

Figure 1(a) is a graph of the distribution function of
- avalanche sizes, obtained from a test simulation with
N =50000 and z,=20 when a=% and . We have
fitted the measured distribution function to the form
given by Eq. (10) and plotted the cutoff in cluster size dis-
tribution s, against 1/(1—a)? in Fig. 1(b).

(10)

III. SANDPILE MODELS
WITH A SPATIAL STRUCTURE

A, Definition of the model

Let the geometry of the model (i.e., the neighborhood
relations) be given by an underlying lattice. We assign an
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FIG. 1. (a) The measured distribution function of avalanche
sizes in the annealed random-neighbor model with 2 and 18
neighbors. The solid lines show the analytical expression of Eq.

(10) when we use s =0.64 (2 neighbors) and 180 (18 neighbors).

(b) The cutoff in cluster size distribution s; as a function of
1/(1—a).

integer z; to each lattice site /, where i =1,...,N. The
integer z; represents an appropriate dynamical variable
(e.g., slope, mechanical stress, heat, pressure, or energy)
in site i in a spatially extended system. In the following
we refer to z; as the height of a column of sand in site i.
We perturb the system (add sand to the system) by choos-
ing at random a position increasing the dynamical vari-
able with one unit, i.e., z;—z; + 1.

Whenever the dynamical variable in site i exceeds a
threshold value, the site topples. Let C denote the coor-
dination number of an interior point in the lattice and let
ix, k=1,...,C; denote the nearest neighbors of site i
with the coordination number C;. For reasons of simpli-
city, we choose zy, =C in the following. It implies that
the allowed values in site 7 are O, ...,z4 —1. The pro-
cess of a toppling in site 7 is defined by

Zi—>Zi'—C N

—-)Zik+1 N k=1,...,Ci .

(11)
z;,
As a result one or more neighbors may exceed the thresh-
old value in which case they have to relax and an
avalanche will propagate in the system. This model is
defined as undirected since the local toppling rule is an
isotropic mechanism. We describe the model as being
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directed if the toppling is anisotropic.

The toppling rule conserves the sum of the z values
whenever an interior site topples (C;=C). Dissipation
only occurs when a boundary site topples (C; <C) be-
cause a boundary site has fewer nearest neighbors than a
site within the system.

The attractor of the system

Analogous to the behavior of the random-neighbor
model, this system will reach an equilibrium state where,
on the average, the rate of flow into the system equals the
rate of flow out of the system across the boundary. That
is, {(z)=(1/N)3X.,z; fluctuates around a constant
value. The system is very sensitive to perturbations if
(z) becomes too large. Sand will rapidly be transferred
to the boundary, where it dissipates. On the other hand,
the system is not as sensitive to perturbations if (z) be-
comes too small. These two situations—to maximize the
average z value and to stabilize the system by dissipating
sand at the boundary—maintain an equilibrium situa-
tion. Pietronero, Tartaglia, and Zhang have shown that
it is possible to calculate {(z) by using an “effective-
medium theory,” which relies on the above-mentioned
balance between the rate of flow into and out of the sys-
tem [19]. Unfortunately we cannct apply the argument
we used in the case of the random-neighbor model which
leads to a statistically stationary state characterized by
Py="--- =P’m_1’ since the proof relies on an assump-

tion of totally uncorrelated sites.

B. The implications of the spatial structure

The introduction of the spatial structure to the model
has two implications. First, the spatial correlations will
introduce correlations between the values in the lattice
sites. That is, not all of the (z,,)" stable configurations
are allowed when the system has reached the equilibrium
state [23]. For example, two nearest neighbors cannot
both be equal to 0. Suppose z; =0C. The site has just re-
laxed. This implies that all the nearest neighbors z;, >1,

k=1,...,C; since one unit is transferred to each of the
nearest-neighboring sites by the relaxation rule. Dhar
. has explicitly calculated the number of states in the at-
tractor N (known as the number of recurrent states) and
shown that these states occur with equal probability [23].
The entropy associated with the SOC state is thus
S =InNg. With z,, =4 only (3.210. . .)¥ states out of the
4% stable states are allowed when the system has reached
the statistically stationary state [23,24]. Thus the system
self-organizes into an exponentially small subset, which is
to be identified with the attractor of the dynamics. (In
the random-neighbor model all stable states are allowed,
ie., Ng=4")

It is possible to get more quantitative results. Majum-
dar and Dhar have analytically calculated the probability
that two sites separated by a distance r in a d-dimensional
hypercubic lattice would both have the minimum value (0
in our definition) [25]. They find an anticorrelation
which, to the lowest order in 7, varies as » =24 for large .
In the case of the Bethe lattice the anticorrrelations de-

crease exponentially as Dhar and Majumdar have shown
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in Ref. [26]. In truly infinite dimensions (the branching
process) these correlations vanish completely, by
definition.

Second, the question of dissipation is transformed to a
transport problem where the input has to be transported
from neighbor to neighbor until it reaches a site where it
dissipates—in this case, at the boundary. If no dissipa-
tion takes place at all (e.g., if the model is defined with
periodic boundary conditions), the model is not well
defined as was the case with the random-neighbor model,
i.e., eventually an initiated avalanche will go on forever.

C. Scaling arguments

1. Scaling of the average avalanche size

In the following we restrict the discussion to d-
dimensional hypercubic lattices of linear size L (N =L?).
The system can only dissipate energy through the bound-
ary. The average distance a particle has to travel to reach
the boundary is proportional to L when we deposit the
units at random. This implies that

(s)=K(L)L , (12)

where K (L) is an L-dependent function. Because of the
random deposition we must have (s)xL¢ €1, ie.,
dK /dL = 0. The specific form of the function K depends
on the actual relaxation dynamics. Thus the average size
of avalanches scales with system size and is infinite in the
thermodynamic limit. If the particle diffuses out to the
boundary, the added particle has to perform L? steps to
cover the distance L as pointed out by Kadanoff et al.
[27], i.e., K (L)=BL, where B is a constant:

{(s)>BL?. (13)

This is indeed the case for the BTW sandpile relaxation
given by Eq. (11). Dhar has given an analytical proof
that (s ) < L? in the undirected BTW-type relaxations in-
dependent of dimension [23]. This has been verified by
measurements of Grassberger and Manna [28].

In a directed model {s) <L so K(L)=235, see, for ex-
ample, Ref. [27]. This can be shown analytically by copy-
ing the proof of Dhar given for the undirected version of
the model.

Let P(s) denote the distribution function of avalanche
sizes. By definition

(s)=[sP(s)ds , (14)

following the fact that P(s) must be of a form producing
an infinite average value in the thermodynamic limit
L — ». Motivated from the discussion of branching pro-
cesses (and from percolation theory among others) we
postulate a distribution function of the form

P(s)es' exp . (15)

M

The distribution function cannot decrease exponential-
ly in the thermodynamic limit since this will make the
average avalanche size finite. A pure power-law

behavior, however, produces a divergence of the average
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avalanche size (provided the power-law exponent 7, is
smaller than 3). Thus the cutoff in cluster size distribu-
tion has to go to infinity when L — o to ensure that the
average value becomes infinite:

sg(L)—>oo when L — o . (16)

Only in exceptional cases is it possible to prove that the
distribution function is a power law in the thermodynam-
ic limit: the Bethe lattice where ;=3 [26] and the

directed model with 7,=7 in d =2 and 7,=$ in d 23

[29]. In all other models we have to rely on simulations
in order to convince possible skeptics of the power-law
behavior of the distribution function of avalanche sizes.
Because we are unable to prove the existence of
power-law behavior we are also unable to get analytical
expressions for the power-law exponent. However, if we
assume a power-law behavior we can obtain some limits
for the power-law exponent 7, as well as relate the criti-
cal exponent to other critical exponents yet to be defined.

2. Finite-size scaling and scaling relations

Let P(s,L) denote the distribution function in a system
with linear size L. Suppose that the distribution function
is a power law up to a certain cutoff size which depends
on the system size L. If this dependence is of a power-
law type, then a generalization of Eq. (15) is the finite-size
scaling ansatz

P(s,L)<L By

S
-1, . . . 17
L"} (17)

where g is a universal scaling function and 8 and v are
critical indices. v describes how the cutoff size scales
with system size. By rewriting the finite-size scaling an-
satz

—B/v

g

S
LY

P(s,L)<L™F
L'V

s

—B/v
< g g’ LV

(18)

we easily see that it is a generalization of the former an-
satz in Eq. (15). As a by-product, we get a scaling rela-
tion, i.e., a relation between the three critical exponents

1—1',=-—% . : e (19)

We can take advantage of the knowledge that for un-
directed model (s)=L? while for directed models
(s)«<L—valid in all dimensions—to get an additional
scaling relation

()= [ "sP(s,L)ds / [ "P(s,L)ds
= ° —B, L
fl sL " Pg 7v ‘ds

=L» [ % 3g(x)ds
1/LY

—~L? B for L > . (20)
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To perform the last step we assume that the integral con-
verges. Therefore we have

[2 (undirected)
2v—B=

1 (directed) . (21)

Eliminating 8 using Eq. (19) we get

]2 (undirected)
v3=1)=1; (directed) , 22)

which once again shows that 7, <3 since v>0.

We can induce further scaling relations between addi-
tional critical exponents. Let s, ¢, #, and a denote the
variables corresponding to the size, lifetime, radius (linear
size), and area of the avalanches, respectively, We assume
a power-law behavior of the probability densities, that is,

1=,

P(x)=x , (23)

where x € {s,t,r,a}. The existence of a relation between
the different variables implies the existence of scaling re-
lations between the exponents 7, 7,, 7,, and 7,. Let y X
denote the exponent relating x with y, i.e.,

x °<y7"’ . (24)
Thus
P(x)dx =P (y)dy

=7, ccyl-—'rygy_ o
dx
=7, ch“_Ty )/rxyx(l/yxy)—l

=X

=x s (25)
resulting in
T, ~2

'y Xy

T, =2+ (26)

According to Eq. (24) y <x Y 5o by definition

Ve =Vpm + @7
Also, we find that

X Kyy"y oc (ZY}’Z )y"y > ny sz =sz ; (28)

The exponents y,, can be measured as well. They ap-
pear as the exponents of the conditional expectation
values [30]. For éxample,

_ E[slr];zsp(s[:)oct’?' , (29)

where P(s|t) is the conditional density of s given t. The
reciprocal relationship between the exponents relating
the different variables is a necessary condition if we as-
sume the existence of a transformation between the vari-
ables. In a strictly mathematical sense such transforma-
tions cannot exist since, as an example, there will always
be more than one possible avalanche size s for a given
lifetime ¢. However, if we find that the reciprocal rela-
tionships are fulfilled quite accurately, it indicates that
the conditional densities, e.g., P(s|t), have a narrow sup-
port around their average value.
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We have 16 unknown exponents altogether, namely 7,
and y,, where x,y € {s,t,r,a} with x7y, but there exists
only 12 linearly independent equations in the form of
Eqgs. (26) and (27). Equation (28) does not contain any
new information; however, we can add two additional
equations.

3. Scaling exponent
determined by compactness and isotropy

In the remaining part, we restrict the discussion of the
two-dimensional BTW model. It is quite easy to prove
that the avalanches are compact. No holes are allowed
inside an avalanche if the system has reached the critical
state.  We apply the concept of forbidden
subconfiguration introduced by Dhar to prove the com-
pactness [23]. Let z, =C, where C is the coordination
number of an interior lattice site. Any set F with heights
satisfying

Z,'SC,-—‘I ’ VZiE]F (30)

is called a forbidden subconfiguration. A configuration
{z;} is an allowed subconfiguration only if it does not con-
tain any forbidden subconfigurations. A system is in the
critical state if and only if it is an allowed configuration
[23].

The characterization of an allowed state enables us to
define an algorithm—Xknown as the burning algorithm—
to determine whether a given state is critical. Let T be a
“test” state. T is a forbidden state if all sites / in T satisfy
z; <C,—1. Otherwise, there are some sites j in which
z;>C;—1. Let T'V denote the smaller set we obtain
when deleting (burning) all these sites. If possible we re-
peat the burning process in T'!, but at some point we
cannot continue the burning process: The final set T'" is
either an empty set, in which case T is a critical state, or
a nonempty set, in which case T is not a critical state.

First, we prove that avalanches are compact in a two-
dimensional square lattice with z,, =4. Suppose that we
do have an avalanche with holes inside. Let & be a con-
nected part without any topplings inside the avalanche
and let & denote the same set just before the avalanche.
If Ngy denotes the number of exterior neighbors then the
boundary sites of & satisfy the inequality

Z’b S3_NEN (31)

since they do not topple; see Fig. 2.
Let C; denote the coordination number of sites within
S. Using

C;+Ngy=4%, (32)
the boundary sites of & satisfy
2, <C;—1. (33)

The sites 7 in_the interior of & also fulfill the condition
Z=<C;—1, so & is a forbidden subconfiguration. Thus the
system was not in the critical state when the avalanche
was initiated.

We can prove the compactness of avalanches in an ar-
bitrary lattice by use of the principle of induction: If &

consists of just one site & is not an allowed
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FIG. 2. To prevent topplings inside § the boundary sites of §
cannot be larger than 3 minus the number of exterior neighbors.
The figure displays a situation in which the boundary sites equal
the maximum value. By inspection we see that the
configuration & is a forbidden subconfiguration, i.e., & is not
burnable.

subconfiguration since
ZSZth_l_NENz—I B (34)

Assume that if & consists of M sites, then & is not an al-
lowed subconfiguration. Then & cannot consist of M +1
sites either, since & will not be an allowed
subconfiguration. Adding one site to a set which is not al-
lowed beforehand does not make it an allowed set. Using
the compactness along with the isotropic nature of the
avalanches we conclude that

Yar=2, (35)

but we are still short of three equations in order to deter-
mine all the critical exponents.

4. Scaling relation
induced by central site multiple topplings

Majumdar and Dhar supply us with an additional
equation [20]. Using the analytical result that the aver-
age number of topplings at the site initiating the
avalanche (n,) scales with the linear system size L as

(n,) <log(L), (36)
and assuming that

s«<an, , (37)
it is possible to show that

VYo =Tr - - - (38)

Substituting Eq. (38) into Eq. (26) with (x,y)=(s,r) we
find that

T, —

2
Ty=2+ =2=1,(3—7), (39)

Tr

showing that Eq. (38) is equivalent with v=7,; see Eq.
(22). The relation s < r’*=r"" shows the origin of 7,=v
since the cutoff in avalanche size scales with system size
as LY. Thus we are “only” short of two equations.
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TABLE I. The critical exponents defined in Eqs. (23) and (24) in the undirected Abelian sandpile
model. The first column is the result of Majumdar and Dhar based on the assertion that 7, =‘TS3- and
Y+=7% [20]. The second column shows the values estimated from the scaling relations along with the
percolation results in 2D, i.e., 7, =%7-, 7’":&, and ¢, =1. The third column is the exponents given
by Zhang [18] and Pietronero, Tartaglia, and Zhang [19]. From measurements of 7, they estimate that
D =1.17. The estimates in the fourth column rely on the ansatz r, =l7’— and y,,=i§- where the latter is
based on the argument by Zhang [18]. Finally, we list the measured exponents in a L =100 lattice; see

Fig. 4. .
Exponent Ref. [20] Percolation Refs. [18,19] Measured +0.05
D—2/3
187 D—e/5 4

T ‘7—5%2 14 Bl =2.05 2+ D14/3 35~2.09 2.08

T %227 : Fe2.14 2.14
r,=vy=1+D 1m2.33 101%3.10 2 #2219 2.14

Ta B=2.17 %‘ilnsZ.OS 2 #=2.10 2.07

Vst %%zl.87 %%1.64 1.63

Vsr J=2.33 S1=1.90 D+4% #=2.19 2.20

¥ sa Im1.17 1 B =1.10 1.06

Ve %:1'25 % --3-%1.33 1.36

Y 1 ~0.63 2~0.67 0.67

Y 7 ~ 1=0.50 # ~0.53 1 1=0.50 0.50 o

5. The dynamical exponent y,,

A possible way out of the shortfall of equations is ei-
ther to establish a connection between the BTW model
and other models in which some of the exponents are
known analytically or to use additional information about
the model (for example, the transport properties) to
derive further constraints on the critical indices.

Majumdar and Dhar have shown that each allowed
configuration in the sandpile model corresponds to a
spanning tree [20]. Taking advantage of the known rela-
tionship between the latter and the g-state Potts model
they establish an equivalence between the sandpile model
and the ¢ —0 limit of the g-state Potts model.

The dynamical exponent ¥, in a spanning tree equals
4. Majumdar and Dhar use this value as the value of the
dynamical exponent in the BTW model. Thus they only
have to measure one exponent to determine all the others.
They use the ansatz 7,=% in order to calculate the
remaining critical exponents. We list the findings in
Table I.

However, the dynamical exponent in the spanning tree
reflects how a spanning tree burns using the burning algo-
rithm. Thus the dynamical exponent v, =3 is related to
a (static) geometrical description of a spanning tree, but
has nothing to do with the dynamics of getting from one
critical state of the sandpile to another.

Zhang has proposed y,=% based on heuristic argu-
ments [18]. The idea is to view the avalanche as a collec-
tion of activation fronts that propagates in the lattice.
The activation front at time 7 is defined as the toppling
sites at time 7. If the activation front was to perform a
pure random walk

tacplr=p2 (40)

However, sites which have just toppled tend to repel the

activation fronts. Thus the avalanche prefers to expand
outward and we expect ¥, <2. If the activation front
performs a self-avoiding random walk it implies

(41)

[SIEN

Y=

6. The interpretation of the fractal boundary

Even though the avalanches are compact, it turns out
that the boundaries are fractal, i.e., the length of the
boundaries scales with the radius of the avalanches like
r?, D >1 [28,19]. The following argument shows that
the critical exponent 7, is related to the fractal properties
of the boundary of an avalanche. We do not determine

fo Bzdl

r Linear size of avalanche

~R8T

FIG. 3. During an avalanche where the sites topple exactly
once only the sites at the boundary change z value. The graph
represents the integrated amopunt of change in z value in an
avalanche of linear size r, l&c(,)Az dl, where C(r) is the cir-
cumference of radius r.
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FIG. 4. Simulation results in a two-dimensional system with BTW relaxation rules. The slope of the straight line in each loge-
logq plot determines the critical exponent. All the results are listed in Table 1.
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the exponent 7, but the argument explains why it is 2=1,%3. (46)

larger than 2.

Assume that we perturb a critical system in the center
of a fixed circle of radius ». On the average, the rate of
flow through the surface of the circle must be a constant.
For simplicity we make the additional assumption that
the avalanche is circular. It is clear that only avalanches
with a radius larger than or equal to 7 can induce a trans-
port through the surface of the circle.

Let us assume we have a situation where the sites only
topple once during an avalanche, i.e., the area of the
avalanche is identical to the size of the avalanche (@ =s).
The only transport (change of z values) in such an
avalanche is at the avalanche surface. Schematically, the
situation is shown in Fig. 3 where it is disclosed that the
amount of transport is proportional to the length of the
boundary.

Thus

1—71

P(rirecl=pP(r)cp =y v, (42)

in accordance with the suggestion of Zhang [18] and
Pietronero, Tartaglia, and Zhang [19]. This argument
may, by the way, indicate why power-law behavior is ob-
served in the sandpile models.

However, if the avalanches are compact [Eq. (35)] but
the boundary is a fractal, i.e., the length of the boundary
is r?, then

P(rrPoc1=P(r)ocp P=p1=-1+D) (43)
Thus we identify
1+D=r,, (44)

that is, the exponent 7, is intimately linked with the frac-
tality of the boundary. We thus expect that
T, =Yg =v>2.

Grassberger and Manna measured the fractal dimen-
sion of the boundary D =1.21 [28]. This value agrees
with our measurements of the exponent 7,.

Note that using the result from Eq. (26) we get

D -1

ar

T, =2+ 45)

Since 1 <D <2 we have the inequality

One could say that the case D =2 resembles the random-
neighbor model (where a =s) in the sense that the
avalanche is all boundary, but of course it makes no sense
to talk about the radius of an avalanche in the random-
neighbor model.

7. Conjecture of the values of the critical exponents

In Table I we have listed the values one would obtain
with the analytical result for percolation clusters in a
two-dimensional (2D) lattice at the percolation threshold.
The clusters in a 2D lattice at the percolation threshold
are fractal with an exponent 2!, which is to be identified
with the exponent y,,. The exponent 7, describing the
percolation cluster size distribution equals 4 in two di-
mensions, and since multiple topplings never occur (by
definition) s =a. The exponents with a reference to time ¢
are not defined.

Also, we display the exponents suggested by Zhang
[18] and Pietronero, Tartaglia, and Zhang [19] (using our
notation [31]). Giving arguments similar to those leading
to Eq. (42), they propose 7,=2, which together with the
compactness implies 7,=2. Furthermore, they argue
that s <rPtcp” 7" resulting in 7,=2+(D +7,—2)/
(D +vy,). The latter is consistent with the scaling rela-
tions Eqgs. (26) and (38) if we identify ,=y,=D +v,,.
However, this implies D =7,—y,=2—4%<1, which of
course is not the case. They did not take into account the
fact that the fractal boundary affects the estimate of the
exponents 7,, and moreover, the assertion s <7t is de-
batable and certainly not supported by measurements
(e.g., it implies ¥, =D +v,,).

A consistent set of values can be obtained using y,, =1
(compactness and isotropy) and y,,=% (self-avoiding ran-
dom walk of activation fronts). Estimating 7,=%, we
can calculate all the other critical indices via the scaling
relations Eqgs. (26) and (27). The result is displayed in
Table I, in which we also list the measured values. The
data were averaged over 10® avalanches in a L =200 sys-
tem in the measurements of 7, and 7,. The other ex-
ponents are measured in a L =100 system. Figure 4
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FIG. 5. The power-law exponent 7, in the BTW sandpile
model as a function of dimension d [32]. The exponent ap-
proaches the mean-field value of % when the dimension in-

creases. We conjecture that 7, =% when d 2d, =6.

shows all the measurements listed in Table I. The agree-
ment with the conjectured values is excellent.

D. The upper critical dimension

One would expect the mean-field description of Sec. II
to be exact either above an upper critical dimension d,, or
in the limit d— . Simulation of the sandpile model
shows that with increasing dimension d the power-law
exponent increases towards the mean-field value 7,=3;
see Fig. 5 [32]. When d =5, 7,==2.48(5) (see also Ref.
[28]), but it is possible to argue that the upper critical di-
mension should be larger than or equal to 6 [33]. Thus
we conjecture that d, =6 for the BTW sandpile model.

IV. SUMMARY

Models without any spatial correlations are described
as branching processes equivalent to the mean-field
description. We introduced the random-neighbor models
in order to be able to simulate the mean-field theory.
These models evolve naturally-—-self-organize—into a
statistically stationary state where the distribution of
avalanche sizes is given by

5
Sg(a)

P(s)crsl_T’ exp

(47)

s;(a)—-»oo for a—1.

The parameter a can be interpreted as being related to
the dissipation in the model. If =1, the model is con-
servative and the system is critical since the distribution
function in Eq. (47) shows a pure power law. Any degree
of nonconservation (a < 1) will introduce a finite cutoff in
the cluster size distribution.

The introduction of the neighborhood relations given
by an underlying lattice will induce spatial correlations as
well as turn the problem into a transport problem. In a
Bethe lattice the BTW relaxation rules given by Eq. (11)
introduce exponentially decreasing correlations while a
hypercubic lattice gives rise to power-law decreasing
correlations.

Furthermore, the average size of avalanches will scale
with system size. This is a consequence of the transport
problem where the rate of flow into the system has to be
transported across the boundary, which is the only place
dissipation takes place. We observe power-law behavior
of the distribution function of avalanche sizes. Heuristic
arguments related to the transport properties of the mod-
el are given to indicate the origin of the power-law
behavior.

Finally, we have derived scaling relations between the
host of critical exponents. Additional constraints—(a)
the compactness along with the isotropy of avalanches,
(b) a relation between the avalanche size and the number
of multiple topplings at the origin of the avalanche, and
(c) the self-avoiding random walk performed by the ac-
tivation fronts—are derived. All in all, we have M —1
equations to determine the M exponents (M =16). Based
on simulations we fix one exponent and calculate the
remaining exponents according to the relations derived.
Thus we conjecture that the power-law exponent corre-
sponding to the distribution of avalanche sizes equals

_ $=2.09, which is to be compared with our measure-

ments of 2.08(5).

The ultimate goal is (was) of course to produce a closed
set of scaling relations and constraints between the criti-
cal exponents. One might speculate whether it is possible
to exploit the one-to-one correspondence between the
SOC states and the spanning trees proved by Majumdar
and Dhar [20] to extract the value of one of the critical
exponents. This would make the two-dimensional un-
directed BTW model belong to the class of solvable mod-
els which consists of the random-neighbor model, the
BTW model on a Bethe lattice, and the directed BTW
model.
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